Department of ME/CE/EE

Subject Code: BS-M102	Category: Basic Science Course
Subject Name: Mathematics – IB	Semester: I
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Course content.			
Module	Description of Topic	Contact	
No		Hrs.	
1	Calculus (Integration): Evolutes and involutes; Evaluation of definite and	8	
	improper integrals; Beta and Gamma functions and their properties;		
	Applications of definite integrals to evaluate surface areas and volumes of		
	revolutions.		
2	Calculus (Differentiation): Rolle's Theorem, Mean value theorems, Taylor's	6	
	and Maclaurin's theorems with remainders; Indeterminate forms and		
	L'Hospital's rule; Maxima and minima.		
3	Sequence and Series: Convergence of sequence and series, tests for	11	
	convergence; Power series, Taylor's series, series for exponential,		
	trigonometric and logarithm functions; Fourier series: Half range sine and		
	cosine series, Parseval's theorem		
4	Multivariate Calculus: Limit, continuity and partial derivatives, Directional	9	
	derivatives, Total derivative; Tangent plane and normal line; Maxima,		
	minima and saddle points; Method of Lagrange multipliers; Gradient, Curl		
	and Divergence.		
5	Matrices: Inverse and rank of a matrix, Rank-nullity theorem; System of	8	
	linear equations; Symmetric, Skew-symmetric and Orthogonal matrices;		
	Determinants; Eigenvalues and Eigenvectors; Diagonalization of matrices;		
	Cayley-Hamilton Theorem, and Orthogonal transformation.		

Course Outcomes:

After completing the course the student will be able to

1. Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

2. Understand the domain of applications of mean value theorems to engineering problems.

3. Learn the tools of power series and Fourier series to analyse engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines

4. Apply the knowledge for addressing the real life problems which comprises of several variables or attributes and identify extremum points of different surfaces of higher dimensions.

5. Understand the different types of matrices, concept of rank, methods of matrix inversion and their applications.

Department of Computer Science and Engineering

Subject Code: BS-M101	Category: Basic Science Course
Subject Name: Mathematics – I A	Semester: I
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Course content.			
Module	Description of Topic	Contact	
No		Hrs.	
1	Calculus (Integration): Evolutes and involutes; Evaluation of definite and	8	
	improper integrals; Beta and Gamma functions and their properties;		
	Applications of definite integrals to evaluate surface areas and volumes of revolutions		
2	Calculus (Dif erentiation): Rolle's Theorem, Mean value theorems, Taylor's	6	
	and Maclaurin's theorems with remainders; Indeterminate forms and		
	L'Hospital's rule; Maxima and minima.		
3	Matrices: Matrices, Vectors: addition and scalar multiplication, matrix	7	
	multiplication; Linear systems of equations, linear Independence, rank of a		
	matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination		
	and Gauss-Jordan elimination.		
4	Vector Spaces: Vector Space, linear dependence of vectors, Basis,	9	
	Dimension; Linear transformations (maps), Range and Kernel of a linear		
	map, Rank and Nullity, Inverse of a linear transformation, Rank-Nullity		
	theorem, composition of linear maps, Matrix associated with a linear map.		
5	Vector Spaces (Continued): Eigenvalues, Eigenvectors, Symmetric, Skew-	10	
	symmetric, and Orthogonal Matrices, Eigenbases. Diagonalization; Inner		
	product spaces, Gram-Schmidt orthogonalization.		

Course Outcomes:

1. Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

2. Understand the domain of applications of mean value theorems to engineering problems.

3. Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

4. Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

5. Learn and apply the concept of eigen values, eigen vectors, diagonalization of matrices and orthogonalization in inner product spaces for understanding physical and engineering problem.

Department of Computer Science

Subject Code: BS-PH101/ BS-PH201	Category: Basic Science Courses
Subject Name: Physics-I	Semester: First/ Second
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

Module	Description of Topic	Contact
No		Hrs.
1	Mechanics:	7
-	Problems including constraints & friction. Basic ideas of vector calculus and partial	
	Differential equations. Potential energy function $F = -\text{grad V}$, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum.	
	Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector.	
	Moment of inertia.	
2	Optics: Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity and qualitative discussion of fringes); diffraction grating(resolution	5
	formulac only), characteristics of diffration grating and its applications. Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.	
	Lasers: Principles and working of laser : population inversion, pumping,	
-	various modes, threshold population inversion with examples.	
3	Electromagnetism and Dielectric Magnetic Properties of Materials: Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation(expression only), applications of dielectrics. Magnetisation , permeability and susceptibility, classification of magnetic	8
	materials, ferromagnetism, magnetic domains and hysteresis, applications.	
4	Quantum Mechanics: Introduction to quantum physics, black body radiation, explanation using the photon concept, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.	16
5	Statistical Mechanics: Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.	8

- 1. Upon completion of this course, students will be able to understand the Basic concepts of mechanics, effect of various types of forces on a body, causes and effects of vibration.
- 2. Students will be able to interpret the intensity variation of light due to Polarization, interference and diffraction, transverse nature of Light-Polarization, Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- 3. Upon completion of this course, students will be able to understand the magnetic and dielectric properties of various material and also properties of materials such as, permeability, polarization, etc.
- 4. Students will be familiar with some of the basic laws related to quantum mechanics as well as simple quantum mechanics calculations.
- 5. Upon completion of this course, students will be able to understand the application of statistical Mechanics in case of Engineering Thermodynamics.

OmDayal Group of Institutions Department of Chemistry

Course Code : BS-CH101	Category : Basic Science Courses	
Course Title : Chemistry-I	Semester : First	
L-T-P : 3-1-0	Credit:4	

Course Objectives:

To motivate students to understand the basic concepts of atomic and molecular structure, spectroscopic techniques and applications, free energy and equilibrium, periodic properties of elements and stereochemistry and structures of compounds and study the different types of organic reactions

Course C		<u>a</u>
Module	Description of Topic	Contact
No		Hrs.
1	Atomic and molecular structure: Schrodinger equation. Particle in box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H2). Energy level diagrams of diatomic. Pi-molecular orbital of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.	10
2	Spectroscopic techniques and applications Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering	8
3	Intermolecular forces and potential energy surfaces Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena	4
4	Use of free energy in chemical equilibria First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.	8
5	Periodic properties Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries	4
6	Stereochemistry Representations of 3 dimensional structures, structural isomers and	4

	stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds	
7	Organic reactions and synthesis of a drug molecule Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.	4

- 1. Analyze microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- 2. Rationalize bulk properties and processes using thermodynamic considerations.
- 3. Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energylevels in various spectroscopic techniques
- 4. Rationalize periodic properties such as ionization potential, electro negativity, oxidation states and electro negativity.
- 5. List major chemical reactions that are used in the synthesis of molecules.

Course Code : ES-EE101	Category : Engineering Science Courses		
Course Title : Basic Electrical Engineering	Semester : First		
L-T-P : 3-1-0	Credit: 4		
Pre-Requisites:			

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction

and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

- 1. To understand and analyze basic electric and magnetic circuits
- 2. To study the working principles of electrical machines and power converters.
- 3. To introduce the components of low voltage electrical installations

Subject Code: ES-CS201	Category: Engineering Science Courses	
Subject Name: Programming for Problem Solving	Semester: II	
L-T-P: 3-0-0	Credit:3	

Course Objectives:

The course is designed to provide complete knowledge of C language. Students will be able to develop logics which will help them to create programs, applications in C. Also by learning the basic programming constructs they can easily switch over to any other language in future. The course aims to provide exposure to problem-solving through programming. It aims to train the student to the basic concepts of the C-programming language. This course involves a lab component which is designed to give the student hands-on experience with the concept.

Course Content:

Course Content:			
Module No	Description of Topic	Contact	
		Hrs.	
1	Introduction to Programming:	4	
	Introduction to components of a computer system (disks, memory,		
	processor, where a program is stored and executed, operating system,		
	compilers etc.) . Idea of Algorithm: steps to solve logical and numerical		
	problems. Representation of Algorithm: Flowchart/Pseudo code with		
	examples. From algorithms to programs; source code, variables (with		
	data types) variables and memory locations, Syntax and Logical Errors		
	in compilation, object and executable code		
2	Arithmetic expressions and precedence	2	
3	Conditional Branching and Loops .Writing and evaluation of	6	
	conditionals and consequent branching .Iteration and loops		
4	Arrays (1-D, 2-D), Character arrays and Strings	6	
5	Basic Algorithms. Searching, Basic Sorting Algorithms (Bubble,	6	
	Insertion and Selection), Finding roots of equations, notion of order of		
	complexity through example programs (no formal definition required)		
6	Functions (including using built in libraries), Parameter passing in	5	
	functions, call by value, Passing arrays to functions: idea of call by		
	reference		
7	Recursion, as a different way of solving problems. Example programs,	5	
	such as Finding Factorial, Fibonacci series, Ackerman function etc.		
	Quick sort or Merge sort.		
8	Structures, Defining structures and Array of Structures	4	
9	Idea of pointers, Defining pointers, Use of Pointers in self-referential	2	
	structures, notion of linked list (no implementation)		
10	File handling.	2	
10	The handling.	4	

Course Outcomes: (No of CO should be same as number of modules. However, the maximum no. of COs should be 5.If No. of modules is more than 5 then merge the COs)

- 1. To formulate simple algorithms for arithmetic and logical problems. To translate the algorithms to programs (in C language)..
- 2. To test and execute the programs and correct syntax and logical errors. To implement conditional branching, iteration and recursion
- 3. To decompose a problem into functions and synthesize a complete program using divide and conquer approach. To use arrays, pointers and structures to formulate algorithms and programs.
- 4. To apply programming to solve matrix addition and multiplication problems and searching and sorting problems
- 5. To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

Department of ME/CE/EE

Subject Code: BS-M202	Category: Basic Science Course
Subject Name: Mathematics – IIB	Semester: II
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Multivariate Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.	11
2	First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.	5
3	Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of D- operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties.	9
4	Complex Variable – Differentiation : Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties	6
5	Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals using the Bromwich contour	9

Course Outcomes

1. Learn the methods for evaluating multiple integrals and their applications to different physical problems.

2. Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.

3. Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.

4. Apply different types of transformations between two 2- dimensional planes for analysis of physical or engineering problems.

5. Understand different techniques to solve Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions and used with various other techniques for solving engineering problems.

Department of Computer Science and Engineering

Subject Code: BS-M201	Category: Basic Science Course
Subject Name: Mathematics – II A	Semester: II
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

	~
Description of Topic	Contact
	Hrs.
Basic Probability: Probability spaces, conditional probability,	11
independence; Discrete random variables, Independent random variables,	
the Multinomial distribution, Poisson approximation to the Binomial	
distribution, infinite sequences of Bernoulli trials, sums of independent	
random variables; Expectation of Discrete Random Variables, Moments,	
Variance of a sum, Correlation coefficient, Chebyshev's Inequality.	
Continuous Probability Distributions: Continuous random variables and	4
their properties, Distribution functions and densities, Normal, Exponential	
and Gamma densities	
Bivariate Distributions: Bivariate distributions and their properties,	5
distribution of sums and quotients, Conditional densities, Bayes' rule.	
Basic Statistics: Measures of Central tendency, Moments, Skewness and	8
Kurtosis, Probability distributions: Binomial, Poisson and Normal and	
evaluation of statistical parameters for these three distributions,	
Correlation and regression – Rank correlation.	
Applied Statistics: Curve fitting by the method of least squares- fitting of	8
straight lines, second degree parabolas and more general curves. Test of	
significance: Large sample test for single proportion, difference of	
proportions, single mean, difference of means, and difference of standard	
deviations.	
Small samples: Test for single mean, difference of means and correlation	4
coefficients, test for ratio of variances - Chi-square test for goodness of fit	
and independence of attributes.	
	Description of TopicBasic Probability: Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the Multinomial distribution, Poisson approximation to the Binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.Continuous Probability Distributions: Continuous random variables and their properties, Distribution functions and densities, Normal, Exponential and Gamma densitiesBivariate Distributions: Bivariate distributions and their properties, distribution of sums and quotients, Conditional densities, Bayes' rule.Basic Statistics: Measures of Central tendency, Moments, Skewness and Kurtosis, Probability distributions: Binomial, Poisson and Normal and evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.Applied Statistics: Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.Small samples: Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit

Course Outcomes:

1. Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

2. Understand the basic ideas of statistics with different characterisation of a univariate and bivariate data set.

3. Apply statistical tools for analysing data samples and drawing inference on a given data set.

4. Learn the basic ideas of curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves and their applications in physical and engineering environment. 5. Understand the ideas of different types of Testing of significance and their different type of

problems.

Department of Chemistry

Course Code : BSC401	Category : Basic Science Courses
Course Title : Biology	Semester : Third
Contacts:2L+1T	Credit:3

Course Objectives:

To introduce modern biology with an emphasis on evolution of biology as a multi-disciplinary field and to make students aware of application of engineering principles in biology and engineering robust solution inspired by biological examples.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction Purpose: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlightthe fundamental importance of observations in any scientific inquiry	2
2	Inquiry Classification: Purpose: To convey that classification <i>per se</i> is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity-Unicellular or multicellular (b) ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus.	3
3	Genetics Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using	4

	human genetics.	
4	Biomolecules Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	4
5	Enzymes Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structurefrom single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	4
7	Macromolecular analysis: Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5
8	MetabolismThermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3

- 1. Describe how biological observations of 18th Century that lead to major discoveries.
- 2. Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological
- **3**. Highlight the concepts of recessiveness and dominance during the passage of geneticmaterial from parent to offspring and identify DNA as a genetic material in the molecular basis of information transfer.
- 4. Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine and analyse biological processes at the reductionistic level
- 5. Classify enzymes and distinguish between different mechanisms of enzyme action.

Department of Computer Science and Engineering

Subject Code: BSc 301	Category: Basic Science Course
Subject Name: Mathematics-III	Semester: III
L-T-P: 2-0-0	Credit:2

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module Description of Topic Contact			
Description of Topic	Contact		
	Hrs.		
Convergence of sequence and series, tests for convergence, power series,	8		
Taylor's series. Series for exponential, trigonometric and logarithmic			
functions.			
Limit, continuity and partial derivatives, Chain rule, Implicit function,	7		
Jacobian, Directional derivatives, Total derivative; Maxima, minima and			
saddle points; Gradient, curl and divergence and related problems.			
Double and triple integrals (Cartesian and polar), change of order of	8		
integration in double integrals, Change of variables (Cartesian to polar).			
Theorems of Green, Gauss and Stokes (Statement only) and related			
problems.			
First Order Differential Equation, Exact, Linear and Bernoulli's equations,	9		
Equations of first order but not of first degree: equations solvable for p,			
equations solvable for y, equations solvable for x and Clairaut's form,			
general & singular solution. Second order linear differential equations with			
constant coefficients, D-operator method, method of variation of			
parameters, Cauchy-Euler equation.			
Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph,	8		
diagraph. Matrix Representation: Incidence & Adjacency matrix. Tree: Basic			
Concept of tree, Binary tree, Spanning Tree, KrusKal and Prim's algorithm			
for finding the minimal spanning tree.			
	Convergence of sequence and series, tests for convergence, power series, Taylor's series. Series for exponential, trigonometric and logarithmic functions. Limit, continuity and partial derivatives, Chain rule, Implicit function, Jacobian, Directional derivatives, Total derivative; Maxima, minima and saddle points; Gradient, curl and divergence and related problems. Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar). Theorems of Green, Gauss and Stokes (Statement only) and related problems. First Order Differential Equation, Exact, Linear and Bernoulli's equations, Equations of first order but not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's form, general & singular solution. Second order linear differential equations with constant coefficients, D-operator method, method of variation of parameters, Cauchy-Euler equation. Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, diagraph. Matrix Representation: Incidence & Adjacency matrix. Tree: Basic Concept of tree, Binary tree, Spanning Tree, KrusKal and Prim's algorithm		

Course Outcomes:

1. To learn and to check the convergence of the infinite series.

2. To understand and apply the concept of function of several variables.

3. To implement multiple integrals and solve the different types problems of multiple integral.

- 4. To understand and to solve Ordinary Differential Equations.
- 5. To understand the concept of Graph and trees

Department of Computer Science & Engineering

Subject Code: PCC-CS301	Category: Professional Core courses
Subject Name: Data Structure & Algorithm	Semester: III
L-T-P: 3-1-0	Credit:3

Course Objectives:

To learn the basics of abstract data types, learn the principles of linear and nonlinear Data structures and build an application using sorting and Searching. This subject will follow the organizing or Structuring data is vital to the design and implementation of efficient algorithms and program development

Course Content:

Module	Description of Topic	Contact
No	Description of Topic	Hrs.
1	Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.	10
2	Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.	9
3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis. Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis	10
4	Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing. Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.	9

- 1. Differentiate how the choices of data structure & algorithm methods impact the Performance of program.
- 2. Solve problems based upon different data structure & also write programs
- 3. Identify appropriate data structure & algorithmic methods in solving problem

- 4. Discuss the computational efficiency of the principal algorithms for sorting, searching and Hashing
- 5. Compare and contrast the benefits of dynamic and static data structures implementations

Department of Computer Science & Engineering

Subject Code: PC-CS302	Category: Professional Core courses
Subject Name: Computer Organization	Semester: III
L-T-P: 3-1-0	Credit:3

Course Objectives:

- 1. To prepare students to perform the analysis and design of various digital electronic circuits.
- 2. To know how Computer Systems work & its basic principles
- 3. To know how I/O devices are being accessed and its principles etc

Course Content:

Module	Description of Topic	Contact
No	1 1	Hrs.
1	Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format. Instruction sets and addressing modes.Commonly used number systems. Fixed and floating point representation of numbers.	8
2	Overflow and underflow. Design of adders - ripple carry and carry look ahead principles. Design of ALU. Fixed point multiplication - Booth's algorithm.Fixed point division - Restoring and non-restoring algorithms. Floating point - IEEE 754 standard.	8
3	Memory unit design with special emphasis onimplementation of CPU-memoryinterfacing.Memory organization, static and dynamic memory, memory hierarchy, associative memory.Cache memory, Virtual memory. Data path design for read/write access.	10
4	Design of control unit - hardwired and microprogrammed control. Introduction to instruction pipelining.Introduction to RISC architectures. RISC vs CISC architectures. I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA.	10

Course Outcomes:

On completion of the course students will be able to

- 1. Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.
- 2. Understand basic structure of different combinational circuits-multiplexer, decoder, encoder etc.
- 3. Perform different operations with sequential circuits.
- 4. Understand memory and I/O operations.

Department of Computer Science and Engineering

Subject Code: PCC-CS401	Category: Professional core courses
Subject Name: Discrete Mathematics	Semester: IV
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set, Sum and Product of Functions, Bijective functions, Inverse and Composite Function, Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor's diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem. Principles of Mathematical Induction: The Well- Ordering Principle, Recursive definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic.	8
2	Basic counting techniques-inclusion and exclusion, pigeon-hole principle, permutation and combination	
3	Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.	8
4	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups, Algebraic Structures with two Binary Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Conjunctive Normal Form	7
5	Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph, definition properties and Example, rooted trees, trees and sorting, weighted trees and prefix codes, Bi-connected component and Articulation Points, Shortest distances	8

Course Outcomes:

On completion of the course students will be able to: -

1. Express a logic sentence in terms of predicates, quantifiers, and logical connectives.

2. Derive the solution for a given problem using deductive logic and prove the solution on based of a logical inference.

3. Classify its algebraic structure for a given a mathematical problem.

4. Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.

5. Develop the given problem as graph networks and solve with techniques of graph theory.

Department of Computer Science & Engineering

Subject Code: PC-CS402	Category: Professional Core courses
Subject Name: Computer Architecture	Semester: IV
L-T-P: 3-1-0	Credit:3

Course Objectives:

- i. To learn the basics of stored program concepts
- ii. To learn the principles of pipelining
- iii. To learn mechanism of data storage
- iv. To distinguish between the concepts of serial, parallel, pipeline architecture.

Course Content:

Module No	Description of Topic	Contact Hrs.
1	Introduction: Review of basic computer architecture (Revisited), Quantitative techniques in computer design, measuring and reporting performance. Pipelining: Basic concepts, instruction and arithmetic pipeline, data hazards, control hazards and structural hazards, techniques for handling hazards. Exception handling. Pipeline optimization techniques; Compiler techniques for improving performance.	12
2	Hierarchical memory technology: Inclusion, Coherence and locality properties; Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, mapping and management techniques, memory replacement policies.	8
3	Instruction-level parallelism: basic concepts, techniques for increasing ILP, superscalar, super- pipelined and VLIW processor architectures. Array and vector processors.	6
4	Multiprocessor architecture: taxonomy of parallel architectures; Centralized shared- memory architecture: synchronization, memory consistency, interconnection networks. Distributed shared- memory architecture. Cluster computers. Non von Neumann architectures: data flow computers, reduction computer architectures, systolic architectures.	12

Course Outcomes:

On completion of the course students will be able to

- 1. Learn pipelining concepts with a prior knowledge of stored program methods
- 2. Learn about memory hierarchy and mapping techniques
- 3. Study of parallel architecture and interconnection network
- 4. Learn about instruction level parallelism

Department of Computer Science & Engineering

Subject Code: PCC-CS403	Category: Professional Core courses	
Subject Name: Formal Language &	Semester: IV	
Automata Theory		
L-T-P: 3-0-0	Credit:3	

Course Objectives:

To analyze the different formal languages, grammars, automata, find out the relationship among them and design different types of automata.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	6
2	Regular languages and finite automata: Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata)	7
3	Context-free languages and pushdown automata: Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic push down automata, closure properties of CFLs	6
4	Context-sensitive languages: Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG.	6
5	Turing machines: The basic model for Turing machines (TM), Turing recognizable(recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators	6
6	Undecidability: Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice s theorem, undecidable problems about languages	6

Course Outcomes:

On completion of the course students will be able to

- 1. Write a formal notation for strings, languages and machines and understand Chomsky hierarchy.
- 2. Design finite automata to accept a set of strings of a language and find the relation between regular language and finite automata.
- 3. Design push down automata to accept a set of strings of a language and find the relation between context free language and push down automata.
- 4. Design linear bounded automata, Turing machine and equivalent languages and grammars.
- 5. Distinguish between computability and non-computability and Decidability and Undecidability.

Department of Computer Sc Engineering

Subject Code: PCC-CS404	Category: Professional Core courses	
Subject Name: Design and Analysis of	Semester: IV	
Algorithms		
L-T-P: 3-0-0	Credit:3	

Course Objectives:

1. The aim of this module is to learn how to develop efficient algorithms for simple computational tasks and reasoning about the correctness of them.

2. Through the complexity measures, different range of behaviours of algorithms and the notion of tractable and intractable problems will be understood.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behaviour; Performance measurements of Algorithm, Time and space trade- offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem	8
2	Fundamental Algorithmic Strategies: Brute-Force, Greedy, Dynamic Programming, Branch and- Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics –characteristics and their application domains.	8
3	Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.	6
4	Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P,NP, NP- complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques	10
5	Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	4

Course Outcomes:

1. For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms

2. Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms.

4. Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.

5. Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. For a given problems of dynamic-programming and develop the dynamic programming algorithms, and analyze it to determine its computational complexity.

Department of Computer Science & Engineering

Subject Code: PCC-CS 501	Category: Professional Core courses	
Subject Name: Compiler Design	Semester: V	
L-T-P: 3-1-0	Credit:3	

Course Objectives:

The Objectives of this course is to explore the principles, algorithms, and data structures involved in the design and construction of compilers. Topics include context-free grammars, lexical analysis, parsing techniques, symbol tables, error recovery, code generation, and code optimization.

Module	Description of Topic	Contact
No	Description of Topic	Hrs.
1	Introduction to Commilian Commilant Analysis of the source	3
1	Introduction to Compiling: Compilers, Analysis of the source	3
	program, The	
2	phases of the compiler, Cousins of the co	-
2	The role of the lexical analyser, Tokens, Patterns,	6
	Lexemes, Input buffering, Specifications of a token, Recognition of a	
	tokens, Finite automata, From a regular expression	
	to an NFA, From a regular expression to NFA, From a regular	
	expression to DFA, Design of a	
	lexical analyser generator (Lex).	
3	The role of a parser, Context free grammars, Writing a grammar, Top	9
	down Parsing, Nonrecursive Predictive parsing	
	(LL), Bottom up parsing, Handles, Viable prefixes, Operator	
	precedence parsing, LR parsers (SLR, LALR), Parser generators	
	(YACC). Error Recovery	
	strategies for different parsing techniques	
4	Syntax director definitions, Construction of syntax	5
	trees, Bottom-up evaluation of S attributed	
	definitions, L attributed definitions, Bottom-up	
	evaluation of inherited attributes.	
5	Type systems, Specification of a simple type	4
	checker, Equivalence of type expressions, Type	
	conversions	
6	Source language issues (Activation trees, Control	5
	stack, scope of declaration, Binding of names), Storage organization	
	(Subdivision of run-time memory, Activation	
	records), Storage allocation strategies, Parameter	
	passing (call by value, call by reference, copy	
	restore, call by name), Symbol tables, dynamic	
	storage allocation techniques.	
7	Intermediate languages, Graphical representation, Three-address	4
	code, Implementation of three	
	address statements	
	(Quadruples, Triples, Indirect triples)	

8	Introduction, Basic blocks & flow graphs, Transformation of basic	5
	blocks, Dag representation	
	of basic blocks, The	
	principle sources of optimization, Loops in flow	
	graph, Peephole optimi	
9	Issues in the design of code generator, a simple	4
	code generator, Register allocation & assignment	

- 1. Understand compilation concept and its different phases.
- 2. Understand the techniques to remove ambiguity from a grammar.
- 3. Design Parse Trees and Context Free Grammars
- 4. Understanding different parsing techniques.
- 5. Code Generation and code optimization techniques.

Department of Computer Science and Engineering

Subject Code: PCC-CS502	Category: Professional Core courses
Subject Name: Operating Systems	Semester: V
L-T-P: 3-3-0	Credit: 3

Course Objectives:

- 1. To learn the mechanisms of OS to handle processes and threads and their communication
- 2. To learn the mechanisms involved in memory management in contemporary OS
- 3. To gain knowledge on distributed operating system concepts that includes architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols

4. To know the components and management aspects of concurrency management

Module No	Description of Topic	Contact Hrs.
1	Introduction: Concept of Operating Systems, Generation of Operating Systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine Case study on UNIX Operating System, WINDOWS Operating System.	3
2	 Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Threads: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS scheduling FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF 	10
3	 Inter-Process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem Dinning Philosopher Problem etc. Deadlock: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery. 	10

4	 Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation– Fixed and variable partition– Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation Hardware support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used(LRU). I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed). 	14
	algorithms File Management : Concept of File, Access methods, File types, File operation, Directory	

- 1. Create processes and threads by the operating system.
- 2. Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time
- 3. For a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement file management system.
- 4. For a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.

Department of Computer Science & Engineering

Subject Code: PCC-CS503	Category: Professional Core courses
Subject Name: Object Oriented	Semester: V
Programming	
L-T-P: 3-0-0	Credit:3

Course Objectives:

To analyze, design and develop Object Oriented Programming system using Java language.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Abstract data types and their specification. How to implement an	8
	ADT. Concrete state space, concrete invariant, abstraction function.	
	Implementing operations, illustrated by the Text example.	
2	Features of object-oriented programming. Encapsulation, object	8
	identity, polymorphism – but not inheritance.	
3	Inheritance in OO design. Design patterns. Introduction and	8
	classification. The iterator pattern.	
4	Model-view-controller pattern. Commands as methods and as objects.	6
	Implementing OO language features. Memory management.	
5	Generic types and collections GUIs. Graphical programming with	6
	Scale and Swing . The software development process	

Course Outcomes:

On completion of the course students will be able to

1. Specify simple abstract data types and design implementations, using abstraction functions to document them.

2. Recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.

3. Name and apply some common object-oriented design patterns and give examples of their use.

4. Implement the OO language features

5. Design applications with an event-driven graphical user interface.

Department of Computer Science & Engineering

Subject Code: ESC-501	Category: Engineering Science Courses
Subject Name: Software Engineering	Semester: V
L-T-P: 3-1-0	Credit:3

Course Objectives:

- 1. To provide the idea of decomposing the given problem into Analysis, Design, Implementation, Testing and Maintenance phases.
- 2. To provide an idea of using various process models in the software industry according to given circumstances.
- 3. To gain the knowledge of how Analysis, Design, Implementation, Testing and Maintenance processes are conducted in a software project.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Overview of System Analysis & Design , Business System Concept,	10
	System Development Life Cycle, Waterfall Model, Spiral Model,	
	Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis,	
	COCOMO model	
2	System Design – Context diagram and DFD, Problem Partitioning,	5
	Top-Down And Bottom-Up design; Decision tree, decision table and	
	structured English; Functional vs. Object- Oriented approach.	
3	Coding & Documentation – Structured Programming, OO	12
	Programming, Information Hiding, Reuse, System Documentation.	
	Testing – Levels of Testing, Integration Testing, Test case	
	Specification, Reliability Assessment, Validation & Verification	
	Metrics, Monitoring & Control.	
4	Software Project Management – Project Scheduling, Staffing,	7
	Software Configuration Management, Quality Assurance, Project	
	Monitoring.	
5	Software Project Management - Project Scheduling, Staffing,	10
	Software Configuration Management, Quality Assurance, Project	
	Monitoring.	

Course Outcomes:

On completion of the course

- 1. Students will be able to decompose the given project in various phases of a life-cycle.
- 2. Students will be able to choose appropriate process model depending on the user requirements.
- 3. Students will be able to perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance.
- 4. Students will be able to know various processes used in all the phases of the product.
- 5. Students can apply the knowledge, techniques, and skills in the development of a software product.

Department of Computer Sc Engineering

Subject Code: PEC-IT-501-B	Category: Professional Elective courses
Subject Name: Artificial intelligence	Semester: V
L-T-P: 3-0-0	Credit:4

Course Objectives:

1. To provide a strong foundation of fundamental concepts in Artificial Intelligence

2. To provide a basic exposition to the goals and methods of Artificial Intelligence

3. To enable the student to apply these techniques in applications which involve perception, reasoning and learning.

Course	Content:	
Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Overview of Artificial intelligence- Problems of AI, AI technique, Tic - Tac - Toe problem. Intelligent Agents: Agents & environment, nature of environment, structure of agents, goal based agents, utility based agents, learning agents. Problem Solving : Problems, Problem Space & search: Defining the problem as state space search, production system, problem characteristics, issues in the design of search programs.	6
2	Search techniques: Solving problems by searching : problem solving agents, searching for solutions; uniform search strategies: breadth first search, depth first search, depth limited search, bidirectional search, comparing uniform search strategies. Heuristic search strategies: Greedy best-first search, A* search, memory bounded heuristic search: local search algorithms & optimization problems: Hill climbing search, simulated annealing search, local beam search, genetic algorithms; constraint satisfaction problems, local search for constraint satisfaction problems. Adversarial search: Games, optimal decisions & strategies in games, the minimax search procedure, alpha-beta pruning, additional refinements, iterative deepening	13
3	Knowledge & reasoning : Knowledge representation issues, representation & mapping, approaches to knowledge representation, issues in knowledge representation.	6
4	Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural- deduction. Probabilistic reasoning: Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logics.	6
5	Natural Language processing : Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing. Learning: Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems : Representing and using domain knowledge, expert system shells, knowledge acquisition.	9

1. Understand the various searching techniques, constraint satisfaction problem and example problems- game playing techniques.

2. Apply these techniques in applications which involve perception, reasoning and learning. 3. Explain the role of agents and how it is related to environment and the way of evaluating it and how agents can act by establishing goals.

4. Acquire the knowledge of real world Knowledge representation.

5. Analyze and design a real world problem for implementation and understand the dynamic behaviour of a system. 6. Use different machine learning techniques to design AI machine and enveloping applications for real world problems.

Department of Computer Science & Engineering

Subject Code: PCC-CS601				Category: Professional Core courses
Subject	Name:	Database	Management	Semester: VI
Systems				
L-T-P: 3-1-0				Credit:3

Course Objectives:

- 1. To understand the different issues involved in the design and implementation of a database system
- 2. To study the physical and logical database designs, database modeling, relational, hierarchical, and network models
- 3. To understand and use data manipulation language to query, update, and manage a Database
- 4. To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server (Database Server), Data Warehousing.
- 5. To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.
- 6. To understand the different issues involved in the design and implementation of a database system

Module	Description of Topic	Contact
No	1 1	Hrs.
1	 Database system architecture: Data Abstraction, Data Independence, Data Definition Language(DDL), Data Manipulation Language(DML). Data models: Entity-relationship model, network model, relational and object oriented data models, integrity constraints, data manipulation operations 	9
2	 Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQLserver. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms. 	13
3	Storage strategies: Indices, B-trees, hashing	3
4	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi- version and optimistic Concurrency Control schemes, Database recovery	5
5	Database Security: Authentication, Authorization and access	3

	control, DAC, MAC and RBAC models, Intrusion detection, SQL injection	
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.	3

1. For a given query write relational algebra expressions for that query and optimize the developed expressions

2. For a given specification of the requirement design the databases using E R method and normalization.

3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, and DB2.

4. For a given query optimize its execution using Query optimization algorithms

5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Department of Computer Sc Engineering

Subject Code: PCC-CS602	Category: Professional Core courses
Subject Name: Computer Network	Semester: VI
L-T-P: 3-0-0	Credit:3

Course Objectives:

1. To develop an understanding of modern network architectures from a design and performance perspective.

2. To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).

3. To provide an opportunity to do network programming.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	9
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA,CSMA/CD,CDMA/CA	8
3	Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.	14
4	Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	8
5	Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.	8

- 1. Recognize the technological trends of Computer Networking.
- 2. Discuss the key technological components of the Network.
- 3. Evaluate the challenges in building networks and solutions to those.

Department of Computer Science & Engineering

Subject Code: PEC-IT602B	Category: Professional Elective courses
Subject Name: Data Warehousing & Data	Semester: IV
Mining	
L-T-P: 3-0-0	Credit:3

Course Objectives: This course gives an introduction to methods and theory for design, development of data warehouses and data analysis using data mining.

Course Content:

Module No	Description of Topic	Contact Hrs.
1	Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods	8
2	Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns	8
3	Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis	8
4	Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis; modulation for communication, filtering, feedback control systems	11
5	Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining	9
6	Recent trends in Distributed Warehousing and Data Mining, Class Imbalance Problem; Graph Mining; Social Network Analysis	5

Course Outcomes:

On completion of the course students will be able to

- 1. Design, develop data warehousing system.
- 2. Study the technique to classification, prediction and clustering method.
- 3. Understand the concept of mining time series data, data stream, graph, social network analysis etc.
- 4. Understanding the concept of mining web link structure, multimedia data on web, web documents and web usage.
- 5. Study the recent trends in distributed data warehousing and data mining.
Department of Computer Science and Engineering

Subject Code: OEC-IT601A	Category: Open elective courses
Subject Name: Numerical Methods	Semester: VI
L-T-P: 3-0-0	Credit:3

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Approximation in numerical computation: Truncation and rounding errors,	2
	Fixed and floating point arithmetic, Propagation of errors.	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and	8
	Newton's divided difference Interpolation.	
3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for	3
	corresponding error terms.	
4	Numerical solution of a system of linear equations: Gauss elimination	8
	method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative	
	method.	
5	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi	3
	method, Newton-Raphson method.	
6	Numerical solution of ordinary differential equation: Euler's method,	2
	Runge-Kutta methods, Predictor Corrector methods and Finite Difference	
	method.	

Course Outcomes:

1. Understand the concept of errors in computation.

2. To learn the method of interpolation to find out the functional value at a point other than the given points.

- 3. To integrate and to find the solution of ODE for complex cases.
- 4. To solve the transcendental equations having infinite roots.
- 5. To solve a systems of linear equations with decimal coefficients

Department of Computer Science & Engineering

Subject Code: PEC-CS701E	Category: Professional Elective Courses
Subject Name: Machine Learning	Semester: VII
L-T-P: 3-0-0	Credit:3

Course Objectives:

To explore, evaluate, and apply different supervised, unsupervised, ensemble, online, distributed machine learning algorithms.

Course Content:		
Module No	Description of Topic	Contact Hrs.
1	Supervised Learning (Regression/Classification) Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes Linear models: Linear Regression, Logistic Regression, Generalized Linear Models Support Vector Machines, Nonlinearity and Kernel Methods Beyond Binary Classification: Multi- class/Structured Outputs, Ranking	10
2	Unsupervised Learning Clustering: K-means/Kernel K-means Dimensionality Reduction: PCA and kernel PCA Matrix Factorization and Matrix Completion Generative Models (mixture models and latent factor models)	7
3	Evaluating Machine Learning algorithms and Model Selection, Introduction to Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random Forests)	6
4	Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning	9
5	Scalable Machine Learning (Online and Distributed Learning) A selection from some other advanced topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference	9
6	Recent trends in various learning techniques of machine learning and classification methods	5

Course Outcomes:

On completion of the course students will be able to

- 1. Explore supervised learning paradigms of machine learning.
- 2. Explore unsupervised learning paradigms of machine learning.
- 3. Evaluate machine learning algorithms.
- 4. To explore Deep learning technique and various feature extraction strategies.
- 5. Explore online learning, distributed learning and recent trends of machine learning.

OmDayal Group of Institutions Department of Computer Science & Engineering

Subject Code: PEC-CS 702E	Category: Professional Elective courses
Subject Name: Cyber Security	Semester: VII
L-T-P: 3-1-0	Credit:3

Course Objectives:

To motivate the students to understand the basic facts about the cyber security and crime. Also to motivate them to know about the challenges and threats while implementing cyber security in practical. **Course Content:**

Course		
Module	Description of Topic	Contact
No		Hrs.
1	Introduction and Importance and challenges in Cyber Security,	6
	Getting idea about Cyberspace, Cyber threats, Cyberwarfare, CIA	
	Triad, Cyber Terrorism, Cyber Security of Critical	
	Infrastructure, Cybersecurity - Organizational	
	Implications.	
2	Introduction to Hackers and Cyber Crimes: Types of Hackers,	7
	Hackers and Crackers, Cyber-Attacks and	
	Vulnerabilities, Malware threats, Sniffing, Gaining	
	Access, Escalating Privileges, Executing	
	Applications, Hiding Files, Covering Tracks,	
	Worms, Trojans, Viruses, Backdoors.	
3	Ethical Hacking and Social Engineering: Ethical	8
	Hacking Concepts and Scopes, Threats and Attack	
	Vectors, Information Assurance, Threat Modelling,	
	Enterprise Information Security Architecture,	
	Vulnerability Assessment and Penetration Testing,	
	Types of Social Engineering, Insider Attack,	
	Preventing Insider Threats, Social Engineering	
	Targets and Defence Strategies.	
4	Cyber Forensics and Auditing: Introduction to Cyber	10
	Forensics, Computer Equipment and associated	
	storage media, Role of forensics Investigator,	
	Forensics Investigation Process, Collecting Network	
	based Evidence, Writing Computer Forensics	
	Reports, Auditing, Plan an audit against a set of	
	audit criteria, Information Security Management	
	System Management. Introduction to ISO	
	27001:2013	
5	Cyber Ethics and Laws: Introduction to Cyber Laws,	5
	E-Commerce and E-Governance, Certifying	
	Authority and Controller, Offences under IT Act,	
	Computer Offences and its penalty under IT Act	
	2000, Intellectual Property Rights in Cyberspace. at	
	Network Layer-IPSec.	

- 1. Getting familiar with the basics of cyber security and its challenges and basic terms.
- 2. Knowing about the different types of attacks and challenges can be possible.
- 3. Having idea ethical hacking and social engineering in detail.
- 4. Get introduced to cyber forensic and auditing- get idea about the types of authentication, forensic fraud and challenges.
- 5. Also have some idea about cyber law and crimes, cyber cerificates.

Department of Computer Science and Engineering

Subject Code: OEC-CS802A	Category: OPEN ELECTIVE COURSE
Subject Name: E-Commerce & ERP	Semester: VIII
L-T-P: 3-0-0	Credit: 3

Course Objectives:

- 1. Define E-Marketplaces and list their components.
- 2. List the Major types of Electronic Markets and describe their features.
- 3. Describe the types of Intermediaries in EC and their roles.
- 4. Describe electronic Cat
- 5. Catalogs, shopping cart, and search Engines.
- 6. Describe the various types of Auctions and list their characteristics.

Module	Description of Topic	Contact
No		Hrs.
1	Overview, Definitions, Advantages & Disadvantages of E – Commerce, Threats of E –Commerce, Managerial Prospective, Rules & Regulations For Controlling E – Commerce, Cyber Laws	3
2	Technologies : Relationship Between E – Commerce & Networking, Different Types of Networking Commerce, Internet, Intranet & Extranet, EDI Systems Wireless Application Protocol : Definition, Hand Held Devices, Mobility & Commerce, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement For E – Commerce Business Models of e – commerce : Model Based On Transaction Type, Model Based On Transaction Party - B2B, B2C, C2B, C2C, E – Governance	7
3	 E – strategy: Overview, Strategic Methods for developing E – commerce. Four C's: (Convergence, Collaborative Computing, Content Management & Call Center). Convergence: Technological Advances in Convergence – Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing: Collaborative product development, contract as per CAD, Simultaneous Collaboration, Security. Content Management : Definition of content, Authoring Tools & Content Management, Content – partnership, repositories, convergence, providers, Web Traffic & Traffic Management ; Content Management , Strength & Weaknesses of Call Centre, Customer Premises Equipment (CPE). Supply Chain Management : E – logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution (SCE), SCE - Framework, Internet's effect on Supply Chain Power 	11

	Cash, E – Payment Threats & Protections.	
	E – Marketing:. Home – shopping, E-Marketing, Tele-marketing	
	Electronic Data Interchange (EDI) : Meaning, Benefits, Concepts,	
	Application, EDI Model, Protocols (UN EDI FACT / GTDI, ANSI X	
4	– 12), Data Encryption (DES / RSA).	8
	Risk of E – Commerce : Overview, Security for E – Commerce,	-
	Security Standards, Firewall, Cryptography, Key Management,	
	Password Systems, Digital certificates, Digital signatures	
	Enterprise Resource Planning (ERP) : Features, capabilities and Overview	
	of Commercial	
	Software, re-engineering work processes for IT applications, Business	
	Process Redesign,	
	Knowledge engineering and data warehouse . Business Modules: Finance,	
	Manufacturing	
5	(Production), Human Resources, Plant Maintenance, Materials	
5	Management,	10
	Quality Management, Sales Distribution Repackage, ERP Market: ERP	10
	Market Place, SAP	
	AG, PeopleSoft, BAAN, JD Edwards, Oracle Corporation ERP-Present and	
	Future: Enterprise	
	Application Integration (EAI), ERP and E-Commerce, ERP and Internet,	
	Future Directions in	
	ERP	

- 1. Understand the basic concepts and technologies used in the field of management information systems
- 2. Have the knowledge of the different types of management information systems and understand the processes of developing and implementing information systems
- 3. Be aware of the ethical, social, and security issues of information systems
- 4. Analyze the impact of E-commerce on business models and strategy
- 5. Explain the process that should be followed in building an E-commerce presence

Department of Chemistry

Course Code : BS-BIO301	Category : Basic Science Courses	
Course Title : Biology	Semester : Third	
L-T-P : 3-0-0	Credit:3	

Course Objectives:

To introduce modern biology with an emphasis on evolution of biology as a multi-disciplinary field and to make students aware of application of engineering principles in biology and engineering robust solution inspired by biological examples.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction Purpose: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlighthe fundamental importance of observations in any scientific inquiry	2
2	Inquiry Classification: Purpose: To convey that classification <i>per se</i> is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity-Unicellular or multicellular (b) ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus.	3
3	Genetics Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using	4

	human genetics.	
4	Biomolecules Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	4
5	Enzymes Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structurefrom single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	4
7	Macromolecular analysis: Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5
8	MetabolismThermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3

- 1. Describe how biological observations of 18th Century that lead to major discoveries.
- 2. Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological
- **3**. Highlight the concepts of recessiveness and dominance during the passage of geneticmaterial from parent to offspring and identify DNA as a genetic material in the molecular basis of information transfer.
- 4. Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine and analyse biological processes at the reductionistic level
- 5. Classify enzymes and distinguish between different mechanisms of enzyme action.

Department of Mechanical Engineering

Subject Code: ES-ECE301	Category: Engineering Science Courses
Subject Name: Basic electronics engineering	Semester: III
L-T-P: 3-0-0	Credit: 3

Course Objectives:

To provide an overview of electronic device components to Mechanical engineering students

Module No	Description of Topic	Contact Hrs.
1	Semiconductor Devices and Applications: Introduction to P-N junction Diode and V-I characteristics, Half wave and Full-wave rectifiers, capacitor filter. Zener diode and its characteristics, Zener diode as voltage regulator. Regulated power supply IC based on 78XX and 79XX series, Introduction to BJT, its input-output and transfer characteristics, BJT as a single stage CE amplifier, frequency response and bandwidth.	7
2	Semiconductor Devices and Applications: Introduction to P-N junction Diode and V-I characteristics, Half wave and Full-wave rectifiers, capacitor filter. Zener diode and its characteristics, Zener diode as voltage regulator. Regulated power supply IC based on 78XX and 79XX series, Introduction to BJT, its input-output and transfer characteristics, BJT as a single stage CE amplifier, frequency response and bandwidth.	6
3	Timing Circuits and Oscillators: RC-timing circuits, IC 555 and its applications as table and mono-stable multi-vibrators, positive feedback, Barkhausen's criteria for oscillation, R-C phase shift and Wein bridge oscillator.	6
4	Digital Electronics Fundamentals: Difference between analog and digital signals, Boolean algebra, Basic and Universal Gates, Symbols, Truth tables, logic expressions, Logic simplification using K- map, Logic ICs, half and full adder/sub tractor, multiplexers, De-multiplexers, flip-flops, shift registers, counters, Block diagram of microprocessor/microcontroller and their applications.	7
5	Electronic Communication Systems: The elements of communication system, IEEE frequency spectrum, Transmission media: wired and wireless, need of modulation, AM and FM modulation schemes, Mobile communication systems: cellular concept and block diagram of GSM system.	6

Upon completion of this course, students will be able to:

- 1. Understand the principles of semiconductor devices and their applications.
- 2. Design an application using Operational amplifier.
- 3. Understand the working of timing circuits and oscillators.
- 4. Understand logic gates, flip flop as a building block of digital systems.
- 5. Learn the basics of Electronic communication system.

Department of Mechanical Engineering

Subject Code: BS-M301	Category: Basic Science Course
Subject Name: Mathematics – III	Semester: III
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Definition of Partial Differential Equations, First order partial differential equations, solutions of first order linear PDEs; Solution to homogenous and non-homogenous linear partial differential equations of second order by complimentary function and particular integral method. Second-order linear equations and their classification, Initial and boundary conditions, D'Alembert's solution of the wave equation; Duhamel's principle for one dimensional wave equation. Heat diffusion and vibration problems, Separation of variables method to simple problems in Cartesian coordinates. The Laplacian in plane, cylindrical and spherical polar coordinates, solutions with Bessel functions and Legendre functions. One dimensional diffusion equation and its solution by separation of variable.	14
2	Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality. Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.	12
3	Basic Statistics, Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, Tests for single mean, difference of means, and difference of standard deviations. Test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.	12

Course Outcomes:

Upon completion of the course students will:-

1. Students will be able to solve field problems in Engineering involving PDEs.

2. Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

3. Understand the basic ideas of statistics with different characterization of a univariate and bivariate data set.

4. Apply statistical tools for analysing data samples and drawing inference on a given data set.

5. Students can also formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.

Department of Mechanical Engineering

Subject Code: ES-ME301	Category: Engineering Science Courses
Subject Name: Engineering Mechanics	Semester: III
L-T-P: 3-1-0	Credit: 4

Course Objectives:

- 1. To provide an introductory treatment of Mechanics to all the students of engineering with a view to prepare a good foundation for taking up advanced courses in the area in the subsequent semesters.
- 2. To provide a working knowledge of statics and dynamics with emphasis on force equilibrium and free body diagrams.
- 3. To determine a wide range of simple, practical structural problems, and an understanding of the mechanical behaviour of materials under various load conditions.

Module No	Description of Topic	Contact Hrs.
1	Module 1: Introduction to Engineering Mechanics covering, Force Systems: Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space —Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminacy;	3
2	Module 2: Friction covering, Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack;	4
3	Module 3: Basic Structural Analysis covering, Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines;	4
4	Module 4: Centroid and Centre of Gravity covering, Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook;	5
5	Module 5: Virtual Work and Energy Method- Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium;	5
6	Module 6: Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D	5

	curvilinear motion; Relative and constrained motion; Newton's 2nd law, (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique);	
7	Module 7:1ntroduction to Kinetics of Rigid Bodies covering, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation;	5
8	Module 8: Mechanical Vibrations covering, Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums;	5
9	Tutorials from the above modules covering, to find the various forces and angles including resultants in various parts of wall crane, roof truss, pipes, etc.; To verify the line of polygon on various forces; To find coefficient of friction between various materials on inclined plan; Free body diagrams various systems including block-pulley; To verify the principle of moment in the disc apparatus; Helical block; To draw a load efficiency curve for a screw jack;	12

Upon completion of this course, students will be able to:

- 1. Use scalar and vector analytical techniques for analyzing forces in statically determinate structures.
- 2. Apply basic knowledge of maths and physics to solve real-world problems.
- 3. Understand basic kinematics concepts displacement, velocity and acceleration (and their angular counterparts).
- 4. Understand dynamics concepts force, momentum, work and energy, the work-energy principle, impulse-momentum principle and the coefficient of restitution and solve dynamic problems.
- 5. Extend all of concepts of linear kinetics to systems in general plane motion (application of Euler's Equation) and get introduction to friction and vibration.

Department of Mechanical Engineering

Subject Code: PC-ME301	Category: Professional Core courses
Subject Name: Thermodynamics	Semester: III
L-T-P: 3-1-0	Credit: 4

Course Objectives:

- 1. To learn about work and heat interactions, and balance of energy between system and its surroundings
- 2. To learn about application of I law to various energy conversion devices
- 3. To evaluate the changes in properties of substances in various processes
- 4. To understand the difference between high grade and low grade energies and II lawlimitations on energy conversion.

Module No.	Description of Topic	Contact Hrs.
1	Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work-Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work.	5
2	Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E ; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy.	5
3	Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart.	8
4	First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume.	5
5	Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale.	5

6	Clausius inequality; Definition of entropy S ; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in Ts coordinates; Definition of Isentropic efficiency	8
	for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for	

- 1. After completing this course, the students will be able to apply energy balance to systems and control volumes, in situations involving heat and work interactions
- 2. Students can evaluate changes in thermodynamic properties of substances
- 3. The students will be able to evaluate the performance of energy conversion devices
- 4. The students will be able to differentiate between high grade and low-grade energies.
- 5. The students will be able to understand the concept of entropy generation.

Department of Mechanical Engineering

Subject Code: PC-ME302	Category: Professional Core courses
Subject Name: Manufacturing Processes	Semester: III
L-T-P: 3-1-0	Credit: 4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Course C	Unicht.	
Module	Description of Topic	Contact
No		Hrs.
1	Conventional Manufacturing Processes:	10
	Casting and moulding metal casting processes and equipment, Heat	
	transfer and solidification, riser design, casting defects and residual stresses.	
2	Introduction to bulk sheet metal forming, plastic deformation and yield	10
	criteria; fundamentals of hot and cold working processes; load	- •
	estimation for bulk forming (Forging, rolling, extrusion, drawing) and	
	sheet forming (shearing, deep drawing, bending) principles of powder	
	metallurgy.	
3	Machining:	14
	Single and multi-point machining, Orthogonal Machining, cutting tool	
	geometry of STTP, milling cutter and Drill, Conversion of rake and	
	clearance angle within ASA and ISO systems, Various force	
	components, Chip formation, Tool wear and Tool life, surface finish	
	and integrity, machinability, cutting tool materials.	
	Cutting Fluids, Coating, Turning, Drilling, Milling and Finishing	
	Processes, Introduction to CNC machining.	
4	Joining/Fastening Processes: Physics of Welding, Brazing and	8
	Soldering; Design consideration in welding, Solid and Liquid state	
	joining processes: Adhesive bonding.	

- 1. Upon completion of this course, students will be able to understand the different casting methods and design the mould for making different products.
- 2. Students will be able to understand the different forming methods and force analysis for making different products
- 3. Upon completion of this course, students will be able to understand different Machining processes and cutting force analysis for different conventional machining processes.
- 4. Students will be able to understand different conventional and unconventional Joining processes.

Department of Mechanical Engineering

Subject Code: ES-ME401	Category: Engineering Science Courses
Subject Name: Material Engineering	Semester: IV
L-T-P: 3-0-0	Credit: 3

Course Objectives:

- 1. Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.
- 2. To provide a detailed interpretation of equilibrium phase diagrams
- 3. Learning about different phases and heat treatment methods to tailor the properties of Fe-C alloys.

Module No.	Description of Topic	Contact Hrs.
1	Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids: Point, line, interfacial and volume defects; dislocation strengthening mechanisms and slip systems, critically resolvedshear stress.	6
2	Mechanical Property measurement: Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stress- strain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery; Hardness: Rockwell, Brinell and Vickers and their relation to strength.	6
3	Static failure theories: Ductile and brittle failure mechanisms, Tresca, Von- mises, Maximum normal stress, Mohr-Coulomb and Modified Mohr- Coulomb; Fracture mechanics: Introduction to Stress-intensity factor approach and Griffith criterion. Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Introduction to nondestructive testing (NDT)	8
4	Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and micro-structural aspects of ledeburite, austenite, ferrite and cementite, cast iron.	6
5	Heat treatment of Steel: Annealing, tempering, normalizing and spheroidizing, isothermal transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo- nitriding, flame and induction hardening, vacuum and plasma hardening	6
6	Alloying of steel, properties of stainless steel and tool steels, maraging steels- cast irons; grey, white, malleable and spheroidal cast irons-copper and copper alloys; brass, bronze and cupro-nickel; Aluminium and Al-Cu – Mg alloys- Nickel based superalloys and Titanium alloys	8

- 1. Student will be able to identify crystal structures for various materials and understand the defects in such structures
- 2. Able to understand the defects in crystal structure.
- 3. Understand how to tailor material properties of ferrous and non-ferrous alloys
- 4. How to quantify mechanical integrity and failure in materials
- 5. Understand the different techniques of heat treatment of steel.

Department of Mechanical Engineering

Subject Code: PC-ME401	Category: Professional Core courses
Subject Name: Applied Thermodynamics	Semester: IV
L-T-P: 3-1-0	Credit:4

Course Objectives:

- 1) To learn about the 1st Law for reacting systems and heating value of fuels
- 2) To learn about gas and vapour cycles and their first law and second law efficiencies
- 3) To understand the properties of dry and wet air and principles of psychometry
- 4) To learn about gas dynamics of air flow and steam through nozzles
- 5) To learn about the reciprocating compressors with and without intercooling
- 6) To analyze the performance of steam turbines

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Introduction solid, liquid and gaseous fuels – stoichometry, exhaust gas analysis, First law of analysis of combustion reactions- Heat calculations using enthalpy tables – Adiabatic Flame Temperature. Chemical Equilibrium and equilibrium composition calculations using free energy	8
2	Vapor power cycles, Rankine cycles with superheat, Reheat and Regeneration. Exergy analysis. Super Critical and Ultra Super Critical. Rankine Cycle – Gas power cycles, Air Standard Otto, Diesel and Dual Cycles. Air Standard, Brayton Cycle, effects of reheat, regeneration and intercooling. Combined gas and vapour power cycles, refrigerants and their properties.	12
3	Properties of wet and dry air, use of psychometric chart, processes involving heating/cooling and humidification/dehumidification, dew point.	4
4	Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, super saturation- Compressible flow in diffusers, efficiency of nozzle and diffuser.	8
5	Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors.	5
6	Analysis of steam turbines, velocity and pressure compounding of steam turbines, velocity and pressure compounding of turbines	3

Course Outcomes:

1. Upon completion of this course, students will be able to understand the first law of analysis of combustion and do heat calculations using enthalpy tables.

- 2. Students will be able to solve various types of sums based on Vapour power cycles like Rankine and Brayton cycle.
- 3. Upon completion of this course, students will be able to use psychometric charts and understand processes involving heating, humidification and dehumidification.
- 4. Students will be able to understand Compressible flow, Stagnation properties, isentropic flow through nozzles, sonic, hyper sonic and sub sonic flow.
- 5. Students will be able to understand and identify various types of compressors and do analysis of steam turbines.

Department of Mechanical Engineering

Subject Code: PC-ME402	Category: Professional Core courses
Subject Name: Fluid Mechanics & Fluid	Semester: IV
Machines	
L-T-P: 3-1-0	Credit:4

Course Objectives:

- 1. To learn about the application of mass and momentum conservation laws for fluid flows
- 2. To understand the importance of dimensional analysis
- 3. To obtain the velocity and pressure variations in various types of simple flows
- 4. To analyze the flow in water pumps and turbines.

Course Content:

Module	Description of Topic	Contact
No	1 1	Hrs.
1	Definition of fluid, Newton's law of viscosity, Units and dimensions-	9
	Properties of fluids, mass density, specific volume, specific gravity,	
	viscosity, compressibility and surface tension, Control volume-	
	application of continuity equation and momentum equation,	
	Incompressible flow, Bernoulli's equation and its applications.	
2	Exact flow solutions in channels and ducts, Couette and Poisuielle	9
	flow, laminar flow through circular conduits and circular annuli,	
	concept of boundary layer – measures of boundary layer thickness –	
	Darcy Weisbach equation, friction factor, Moody's diagram.	
3	Need for dimensional analysis – methods of dimension analysis –	6
	Similitude – types of similitude Dimensionless parameters –	
	application of dimensionless parameters – Model analysis.	
4	Euler's equation – theory of Rotodynamic machines – various	8
	efficiencies - velocity components at entry and exit of the rotor,	
	velocity triangles – Centrifugal pumps, working principle, work done	
	by the impeller, performance curves - Cavitation in pumps-	
	Reciprocating pump – working principle.	
5	Classification of water turbines, heads and efficiencies, velocity	8
	triangles Axial, radial and mixed flow turbines- Pelton wheel, Francis	
	turbine and Kaplan turbines, working principles – draft tube- Specific	
	speed, unit quantities, performance curves for turbines – governing of	
	turbines.	

Course Outcomes:

On successful completion of this course, student should be able to:

- 1. Students will learn the basic properties of fluid
- 2. They will be able to mathematically analyze simple flow situations.
- 3. They will learn the dimensional analysis.
- 4. They will be able to evaluate the performance of pumps.
- 5. They will be able to evaluate the performance of turbines.

Department of Mechanical Engineering

Subject Code: PC-ME403	Category: Professional Core Courses
Subject Name: Strength of Materials	Semester: IV
L-T-P: 3-1-0	Credit: 4

Course Objectives:

To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads and to calculate the elastic deformation occurring in these simple geometries for different types of loading.

Module No	Description of Topic	Contact Hrs.
1	Deformation in solids – Hooke's law, stress and strain – tension, compression and shear stress – elastic constants and their relations – volumetric, linear and shear strains – principal stresses and principal planes – Mohr's circle;	8
2	Beams and types transvers loading on beams – shear force and bend moment diagrams – Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads;	8
3	Moment of inertia about an axis and polar moment of inertia, deflection of a beam using double integration method, computation of slopes and deflection in beams, Maxwell's reciprocal theorems. Buckling of columns, Euler's theory, critical loads for different types of constraints;	10
4	Torsion, stresses and deformation in circular and hollow shafts, stepped shafts, deflection of shafts fixed at both ends, stresses and deflection of helical springs;	8
5	Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure;	8

Course Outcomes:

Upon completion of this course, students will be able to:

- 1. Understand the concepts of mechanics of deformable bodies.
- 2. Analyse different types of loading in different types of beams.
- 3. Analyse problems of slope and deflection in beams and columns.
- 4. Understand the concept of torsion in circular shafts and helical springs.
- 5. Understand the stress-strain distribution in thin and thick pressure vessels.

Department of Mechanical Engineering

Subject Code: PC-ME404	Category: Professional Core courses
Subject Name: Metrology & Instrumentation	Semester: IV
L-T-P: 3-1-0	Credit:4

Course Objectives:

- 1. To understand the working of linear and angular measuring instruments.
- 2. To familiarize with the working of optical measuring instruments and fundamentals of limits and limit gauges.
- 3. To give basic idea about various methods for measurement of screw thread and surface finish parameters.
- 4. To give an exposure to advanced measuring devices and machine tool metrology.
- 5. To provide students an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.
- 6. To provide basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

Module	Description of Topic	Contact
No		Hrs.
1	Concept of measurement:-Introduction to Metrology; Need for high precision measurements; Terminologies in Measurement- Precision, accuracy, sensitivity, calibration, resolution. Errors in Measurement, types of errors, Abbe's Principle. Basic standards of length- Line standard, End standards, Wavelength standard; Various Shop floor standards. Linear Measurement – Slip gauges, wringing, grades; Surface plate; Dial indicators; Height gauges and Vernier calliper; screw gauge. Comparatorsmechanical, electrical, optical and pneumatic. Angular Measurement – Bevel protractor; Sine Bar, principle and use of sine bar, sine centre; Angle gauges. Sprit level; Angle Dekkor; Clinometers.	8
2	Limits and Limit gauges – Making to suit, selective assembly, systems of limits and fits; Types of fits; Hole basis system and Shaft basis system. Tolerance, allowance and deviation (as per BIS). Limit Gauges – GO and NO GO gauges; types of limit gauges. Gauge design - Taylor's principle of gauging; Gauge tolerance, disposition of gauge tolerance, wear allowance. Optical Measuring Instruments: - Benefits of light waves as standards; Monochromatic light; Principle of Interference. Interference band, optical flat, surface measurement. Interferometers – NPL, Pitter-NPL, auto collimator.	8
3	Screw thread measurement – Screw thread terminology; Measurement of major diameter; root diameter; pitch; effective diameter with two wire method and three wire method. Measurement of flank angle and form by profile projector and microscope. Measurement of surface texture – roughness and waviness; Analysis of surface traces, peak to valley height, R.M.S. value, Centre Line Average and Ra value, Rt, Rz etc. Methods of measuring surface	8

	roughness – Stylus probe, Tomlinson surface meter, Talysurf; surface	
	roughness measurement – assessment length, roughness width cut-off,	
	sampling length and evaluation length.	
4		0
4	Introduction to Digital Measurement- significance of Digital	8
	measurement; methods; Classification. Stages in generalized	
	measuring system– SensorTransducer stage, Signal-Conditioning	
	stage, Readout-Recording stage; Types of input quantities; Active and	
	Passive transducers. Performance characteristic of measuring devices.	
	Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic	
	characteristics- different order systems and their response-,	
	Measuring lag, Fidelity, Dynamic error; Transducers- Working,	
	Classification of transducers. Motion and Dimension measurement -	
	LVDT – Principle, applications, advantages and limitations	
5	Strain and Stress Measurement- Electrical resistance strain	
	gaugePrinciple, operation. Measurement of Force and Torque– Strain-	
	Gauge Load Cells, Hydraulic and Pneumatic load cells- force	
	measurement using piezoelectric quartz crystal. Torque	
	Measurement- Dynamometers- Mechanical, Hydraulic and	
	Electrical. Vibration measurement– Vibrometers and Accelerometers.	
	Temperature Measurement- Use of Thermal Expansion- Liquid-in-	
	glass thermometers, Bimetallic strip thermometer, Pressure	
	thermometers. Thermocouples– Resistance Temperature Detectors	
	(RTD); Thermistors; Pyrometers.	

Upon successful completion of the course, student will have

1. Understand the working of linear and angular measuring instruments.

2. Know the fundamentals of limits and limit gauges, various methods for measurement of screw thread and surface roughness parameters and the working of optical measuring instruments.

3. Acquire an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.

4. Understand different instruments used in measurement system.

5. Get basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

OmDayal Group of Institutions Department of Mechanical Engineering

Subject Code: PC-ME501	Category: Professional Core Courses
Subject Name: Heat Transfer	Semester: V
L-T-P: 3-1-0	Credit: 4

Course Objectives:

- 1. The aim of the course is to build a solid foundation in heat transfer exposing students to the three basic modes namely conduction, convection and radiation.
- 2. Rigorous treatment of governing equations and solution procedures for the three modes will be provided, along with solution of practical problems using empirical correlations.
- 3. The course will also briefly cover boiling and condensation heat transfer, and the analysis and design of heat exchangers.

Module No.	Description of Topic	Contact Hrs.
1	Introduction to three modes of heat transfer, Derivation of heat balance equation- Steady one dimensional solution for conduction heat transfer in Cartesian, cylindrical and spherical geometry, concept of conduction and film resistances, critical insulation thickness, lumped system approximation and Biot number, heat transfer through pin fins- Two dimensional conduction solutions for both steady and unsteady heat transfer-approximate solution to unsteady conduction heat transfer by the use of Heissler charts.	14
2	Heat convection, basic equations, boundary layers- Forced convection, external and internal flows- Natural convective heat transfer- Dimensionless parameters for forced and free convectionheat transfer- Correlations for forced and free convection- Approximate solutions to laminar boundary layer equations (momentum and energy) for both internal and external flow- Estimating heat transfer rates in laminar and turbulent flow situations using appropriate correlations for free and forced convection.	10
3	Interaction of radiation with materials, definitions of radioactive properties, Stefan Boltzmann's law, black and gray body radiation, Calculation of radiation heat transfer between surfaces using radiative properties, view factors and the radiosity method.	9
4	Types of heat exchangers, Analysis and design of heat exchangers using both LMTD and ε - NTU methods.	7
5	Boiling and Condensation heat transfer, Pool boiling curve.	4
6	Introduction to mass transfer, Similarity between heat and mass transfer.	4

- 1. After completing the course, the students will be able to formulate and analyse a conduction type heat transfer problem
- 2. After completing the course, the students will be able to formulate and analyse a convection type heat transfer problem
- 3. After completing the course, the students will be able to formulate and analyse a radiation type heat transfer problem
- 4. The students will be able to obtain exact solutions for the temperature variation using analytical methods where possible or employ approximate methods or empirical correlations to evaluate the rate of heat transfer
- 5. The students will be able to design devices such as heat exchangers and also estimate the insulation needed to reduce heat losses where necessary.

Department of Mechanical Engineering

Subject Code: PC-ME502	Category: Professional Core Courses
Subject Name: Solid Mechanics	Semester: V
L-T-P: 3-1-0	Credit: 4

Course Objectives:

The objective is to present the mathematical and physical principles in understanding the linear continuum behaviour of solids.

Course Content:

Module No	Description of Topic	Contact Hrs.
1	Introduction to Cartesian tensors, Strains: Concept of strain, derivation of small strain tensor and compatibility, Stress: Derivation of Cauchy relations and equilibrium and symmetry equations, principal stresses and directions;	12
2	Constitutive equations: Generalized Hooke's law, Linear elasticity, Material symmetry; Boundary Value Problems: concepts of uniqueness and superposition;	10
3	Plane stress and plane strain problems, introduction to governing equations in cylindrical and spherical coordinates, axisymmetric problems;	10
4	Application to thick cylinders, rotating discs, torsion of noncircular cross-sections, stress concentration problems, thermoelasticity, 2-D contact problems;	9
5	Solutions using potentials. Energy methods. Introduction to plasticity;	7

Course Outcomes:

Upon completion of this course, students will be able to:

- 1. Understand the concept of stress and strain in solid deformable bodies.
- 2. Develop relationships among stress, strain and deformation for linearly elastic solid and generate the governing equations in cartesian, cylindrical and spherical coordinates.
- 3. Solve plane stress and plane strain problems.
- 4. Solve asymmetric and axisymmetric, torsional, bending and thermoelastic problems.
- 5. Understand the properties of ideally plastic solid and apply the concepts of energy methods in solving structural problems.

Department of Mechanical Engineering

Subject Code: PC-ME 503	Category: Professional Core Courses	
Subject Name: Kinematics and Theory of	Semester: V	
Machines		
L-T-P: 3-1-0	Credit:4	

Course Objectives:

- 1. To understand the kinematics and rigid- body dynamics of kinematically driven machine components
- 2. To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link
- 3. To be able to design some linkage mechanisms and cam systems to generate specified output motion
- 4. To understand the kinematics of gear trains

Module	Description of Topic	Contact
No		Hrs.
1	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains. Limit positions- Mechanical advantage- Transmission angle Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms.	6
2	Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Corioli's component of acceleration- introduction to linkage synthesis- three position graphical synthesis for motion and path generation.	7
3	Classification of cams and followers- Terminology and definitions- Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent camspressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers.	5
4	Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics.	6
5	Surface contacts- sliding and rolling friction- friction drives bearings and lubrication, Friction clutches- Belt and Rope drives Friction in brakes.	6
6	Vibrations– Free and forced vibration of undamped and damped Single DOF systems, Resonance, Transmissibility Ratio, Effect of damping, Vibration Isolation, Critical Speed of Shafts.	6

7	Balancing of Reciprocating and Rotating Masses- Static balancing, Unbalance of force or moment, Dynamic balancing of rotating masses- graphical and analytical methods; Swaying couple; Hammer blow.	4
8	Governors- Use and classification; Study and analysis of Porter, Proell and Wilson-Hartnell governors; Sensitiveness, stability, isochronism, hunting, effort and power of governors.	3
9	Flywheel- Inertia force and inertia torque in reciprocating engine, correction couple (torque), Turning moment diagram and flywheel design.	3
10	Gyroscope- Gyroscopic couple and precessional motion, Effect of gyroscopic couple on aeroplane and ship, Stability of two wheel and four wheel vehicles taking turn.	2

On successful completion of this course, student should be able to:

- 1. Learn various mechanisms and do velocity and acceleration analysis of these mechanisms.
- 2. Apply the principles of gyroscopic effects and stabilization on various transport vehicles and applications of various governors.
- 3. Learn about gears, cams, bearings and flywheel and their applications.
- 4. Apply the principles of balancing of masses to various links, mechanisms and engines.
- 5. Learn various principles of vibrations of different systems.

Department of Mechanical Engineering

Subject Code: HM HU501	Category: Humanities and social science	
Subject Name: Humanities I (Effective	Semester: V	
technical communication)		
L-T-P: 3-0-0	Credit:3	

Course Objectives:

The course aims to teach students the principles of technical communication for their academic and professional needs, focusing on essential written and oral skills for presenting technical information effectively.

Module	Description of Topic	Contact
No		Hrs.
1	Information Design and Development- Different kinds of technical documents, Information development life cycle, Organization structures, factors affecting information and document design, Strategies for organization, Information design and writing for print and for online media	7
2	Technical Writing, Grammar and Editing- Technical writing process, forms of discourse, Writing drafts and revising, Collaborative writing, creating indexes, technical writing style and language. Basics of grammar, study of advanced grammar, editing strategies to achieve appropriate technical style. Introduction to advanced technical communication, Usability, Hunan factors, Managing technical communication projects, time estimation, Single sourcing, Localization	8
3	Self Development and Assessment- Self assessment, Awareness, Perception and Attitudes, Values and belief, Personal goal setting, career planning, Self-esteem. Managing Time; Personal memory, Rapid reading, Taking notes; Complex problem solving; Creativity	6
4	Communication and Technical Writing- Public speaking, Group discussion, Oral; presentation, Interviews, Graphic presentation, Presentation aids, Personality Development. Writing reports, project proposals, brochures, newsletters, technical articles, manuals, official notes, business letters, memos, progress reports, minutes of meetings, event report.	8
5	Ethics- Business ethics, Etiquettes in social and office settings, Email etiquettes, Telephone Etiquettes, Engineering ethics, Managing time, Role and responsibility of engineer, Work culture in jobs, Personal memory, Rapid reading, Taking notes, Complex problem solving, Creativity	7

On successful completion of this course, student should be able to:

1. Understand the dynamics of Verbal and Non Verbal aspects of technical communication 2. Practice multi-step writing process to plan, draft, and revise reports, correspondence, and presentations.

3. Illustrate and examine the knowledge of ethical aspects of engineering

4. Demonstrate and explain social and professional etiquettes

5. Plan self-development and practice self-assessment to function on multi-disciplinary teams.

Department of Mechanical Engineering

Subject Code: PC-ME601	Category: Professional Core courses
Subject Name: Manufacturing Technology	Semester: VI
L-T-P: 4-0-0	Credit:4

Course Objectives:

To impart knowledge to make students able to demonstrate the tooling needed for manufacturing, the dimensional accuracy and tolerances of products, assembly of different components. Also students will be able to understand the principles of working of NC, CNC machine tools and rapid prototyping.

Module	Description of Topic	Contact
No		Hrs.
1	Tooling for conventional and non-conventional machining processes: Mould and die design, Press tools, Cutting tools; Holding tools: Jigs and fixtures, principles, applications and design; Press tools: Configuration, design of die and punch; principles of forging die design.	12
2	Metrology: Metrology in tool wear and part quality including surface integrity, alignment and testing methods; tolerance analysis in manufacturing and assembly. Process metrology for emerging machining processes such as micro-scale machining, Inspection and work piece quality.	8
3	Assembly practices: Manufacturing and assembly, process planning, selective assembly, Material handling and devices.	6
4	NC/CNC Machine Tools and Systems Types of automation: Fixed (or hard) and programmable (or flexible); need, advantages and applications of flexible automation over fixed automation. Components and Their Functions in NC/CNC Machines MCU, DPU and CLU, Feed drives using stepper/ servo motors and recirculating ball screw-nut system, Automatic Tool Changers- Tool Turret and Tool Magazine, Automatic pallet Changer. Basic systems of NC and CNC machines Coordinate system, Control– open loop and closed loop, Dimensioning– absolute and incremental, Point–to–point and contour motion, Linear and circular Interpolation. CNC Machine Tools and Integrated Automation Structure and working principle of CNC lathe, milling machine, Examples and use of CNC machines, Machining Centre (Vertical and Horizontal), Integrated Automation systems (DNC- Direct and Distributed or BTR and Dedicated system, FMS- FFMS, FMC and FMM)– characteristics and applications.	8
5	Part Programming for CNC machines Manual Part Programming using ISO G and M Codes in CNC lathe and milling machine for	8

	simple jobs, Canned cycle. Computer Aided Part Programming using MACRO statements in APT for simple jobs in CNC lathe and milling machine.	
6	Rapid Prototyping Overview of Rapid Prototyping, Basic Process- CAD Model Creation, Conversion to STL format, Slicing the STL File, Layer by layer construction. Use of CMM and 3-D Camera for making virtual model. Principles, systems, relative advantages and applications of the common RP methods, such as Stereo lithography (SLG), Selective laser sintering (SLS), Fused deposition modelling (FDM), Laminated objects manufacturing (LOM), 3-D Printing.	6

Upon successful completion of the course, student will have

- 1. To describe machines and related tools for manufacturing various components.
- 2. To understand the relationship between process and system in manufacturing domain.
- 3. To understand the cutting tool development.
- 4. To experiment on CNC machine tools.
- 5. To demonstrate rapid prototyping methods.

Department of Mechanical Engineering

Subject Code: PC-ME602	Category: Professional Core Courses
Subject Name: Design of Machine Elements	Semester: VI
L-T-P: 3-1-0	Credit: 4

Course Objectives:

This course seeks to provide an introduction to the design of machine elements commonly encountered in mechanical engineering practice, through

- 1. a strong background in mechanics of materials-based failure criteria underpinning the safety-critical design of machine components.
- 2. an understanding of the origins, nature and applicability of empirical design principles, based on safety considerations
- 3. an overview of codes, standards and design guidelines for different elements.
- 4. an appreciation of parameter optimization and design iteration.
- 5. an appreciation of the relationships between component level design and overall machine system design and performance.

Course	Content:

Module No	Description of Topic	Contact Hrs.
1	Objective and scope of Mechanical Engineering Design; Design considerations; Review and selection of materials and manufacturing processes; codes and standards;	4
2	Modes of failure; Design/allowable stress; Factor of safety (FoS); Theories of failure – maximum normal stress theory, maximum shear stress theory, Distortion energy theory. Choice of Failure criteria; Design for stability: buckling analysis – Johnson and Euler columns;	4
3	Fatigue in metals; S-N curve; Endurance limit and fatigue strength; Stress concentration factors – effect of discontinuity, fillets and notches; Effect of size, surface finish, stress concentration and degree of reliability on endurance limit; Design for finite and infinite life; Goodman, modified Goodman and Soderberg diagrams with respect to fatigue failure under variable stresses; Cumulative fatigue damage – Miner's equation;	5
4	Design of (i) Cotter joint; (ii) Knuckle joint and (iii) Fillet Welded joint of brackets under different types of loading;	6
5	Bolted joints: Metric thread, standard sizes, use of lock nuts and washers; Applications in structures including brackets, turn buckle; pre-stressed bolts; Riveted joints: Unwin's formula; Brief discussion on single, double and triple row lap joints, butt joints with single or double strap / cover plate; simple strength design; joint efficiencies;	6
6	Design of: (i) Solid and hollow shafts, strength design of shafts, design based on torsional rigidity; (ii) Shaft coupling-rigid, pin-bush and geared flexible type, alignment of coupling; (iii) Belt drives- geometrical relations, derivation of torque and power transmission by flat and V-belt drives, selection of belt from manufacturers' catalogues, pulley (iv) Chain drives – roller chains, polygonal effect, power rating, sprocket wheel, silent chain;	10

7	Design of: (i) Transmission screw, Screw jack, (ii) Helical compression spring - stress and deflection equations, stiffness, curvature effect: Wahl's factor, springs in parallel and series; (iii) multi-leaf springs: load-stress and load-deflection equations, Nipping;	8
8	Analysis and design of sliding and rolling contact bearings, Design of transmission elements: spur, helical, bevel and worm gears; Analysis of clutches and brakes;	5

Upon completion of this course, students will be able to:

- 1. Get an overview of the design methodologies employed for the design of various machine elements.
- 2. Understand the theories of failure to design and analyse various mechanical components.
- 3. Recognize and apply the concept of fatigue phenomenon in design of components undergoing cyclic loading.
- 4. Understand the importance of factor of safety applying the same in designing.
- 5. Analyse and solve various problems related to design of machine elements.
Department of Mechanical Engineering

Subject Code: PE-ME601A	Category: Professional Elective courses
Subject Name: IC engines and gas turbines	Semester: VI
L-T-P: 3-0-0	Credit:3

Course Objectives:

To acquire knowledge about the IC engine cycles, classification, working Principles and tomeasure performance parameters along with heat balance sheet. To explain different alternate fuels, gas turbines and about jet propulsion

Module No.	Description of Topic	Contact Hrs.
1	 Introduction: Basic Engine components and Nomenclature, Classification of Engines, The working principle of Engines, Comparison of 2-Stroke and 4-Stroke Engines; CI, and SI Engines, Ideal and Actual Working Cycles and their analysis, Valve timing Diagram. Fuels: Fossil fuels, Chemical structure of Petroleum, Properties of SI and CI Engine Fuels, Fuel Ratings; Octane Number, Cetane Number. 	6
2	Carburetors & Fuel Injection: Air Fuel Mixture Requirements, Construction and Working of Simple Carburetor, Calculation of Air-Fuel Ratio, Parts of Carburetor. Requirement of Injection Systems, Classification of Injection Systems, Fuel Feed pump, Injection Pumps, Working principles of Governors, Nozzles and Fuel Injector, Injection in SI and CI Engines. Combustion and Ignition Systems in SI and CI Engines: Normal and Abnormal Combustion in SI and CI Engines, Stages of Combustion, Detonation and Knocking.	7
3	Performance parameters for IC Engines:Engine Power, Engine Efficiencies, Performance Characteristics, Variables Effecting Performance Characteristics, Methods of Improving Engine Performance, Heat Balance.Modern Automotive Engines: Changes in Fuel injection Methods in S.I and C.I engines, Common Rail Direct Injection System, Gasoline Direct Injection, Variable Valve Technology, A brief review of Design changes to achieve high efficiency.	
5	Alternate Fuels For IC Engines: Need for use of alternate fuels. Use of alcohol fuels. Biodiesel. Biogas and Hydrogen in engines.	
6	Gas Turbine: Introduction to Gas Turbines, Development, Classification and Application of Gas Turbines, Ideal and Actual Cycles; Effect of Inter cooling, Reheating, Regeneration, Combined cycle and	6

	Cogeneration.	
	Gas Turbine Cycles for Aircraft Propulsion:	
	Criteria of performance, Intake, and propelling nozzle efficiencies,	
	Simple Turbojet Cycle, The turboprop engine, Thrust	
7	augmentation, Gas turbine combustion systems, Combustion	7
/	chamber designs, Gas	1
	Turbine Emissions.	

- 1. Explained basic concepts of actual cycles with analysis and to describe the fundamental concepts of IC engines along with its working principles.
- 2. Described the combustion phenomenon in SI and CI engines.
- 3. Evaluated the performance of IC engines and the importance of alternate fuels.
- 4. Classified the essential components of gas turbine along with its performance improvingmethods.
- 5. Illustrated the working principle of different types of Jet propulsive engines and Rockets.

Department of Mechanical Engineering

Subject Code: PE-ME601B	Category: Professional Elective courses
Subject Name: Ref. and Air conditioning	Semester: VI
L-T-P: 3-0-0	Credit:3

Course Objectives:

- 1. To know about the basics of refrigeration and air-conditioning system.
- 2. To learn about different types of Refrigeration, Air-Conditioning and ventilation systems.
- 3. To know about designing a Refrigeration and Air-Conditioning system.

Module No.	Description of Topic	Contact Hrs.
1	Introduction: Concepts of Refrigeration and Air-Conditioning. Unit of	02
1	refrigeration, Refrigerants- Desirable Properties, Nomenclature	
	Simple Vapour Compression Refrigeration System (Simple VCRS):	05
	Vapour compression cycle on p-h and T-s diagrams. Cycles with	
2	subcooling and superheating, their effects; Effect of changes in	
2	evaporator pressure and condenser pressure on the performance of a	
	simple VCRS; dry compression and wet compression of refrigerant;	
	actual Vapour Compression Cycle.	
3	Air Refrigeration System (ARS): Bell-Coleman refrigerator. COP	03
	determination, actual air-refrigeration cycle.	
	Vapour Absorption Refrigeration System (VARS): Advantages of	04
4	VARS over VCRS. Working principle of simple VARS, practical	
	VARS. Limitations of VARS, maximum COP of a VARS, Lithium	
	bromide-water System; Aqua-ammonia systems.	0.4
	Equipment and Control: Major Refrigeration Equipment-	06
-	Compressors: Types; reciprocating, rotary & centrifugal, volumetric	
5	efficiency, Condensers: types used in refrigeration systems;	
	Evaporators: expansion devices: capillary tubes and thermostatic	
	expansion valves.	02
6	Ventilation– Definition & Requirement, Natural & Mechanical	03
	Ventilation, Ventilation Load Calculation.	05
	Basic definitions and principles related to Psychometry; Psychometric	05
7	Charts & Their Uses; Heating, Cooling, Heating & Humidification &	
	Cooling & Dehumidification processes. Adiabatic Saturation, Cooling	
	Coils, By-pass Factor.	08
8	Sensible Heat Factors. Heat Load estimation: Simple cases of Cooling	08
0	and Dehumidification. Duct Sizing & Design. Air-conditioning equipment: Air handling units, Cooling Towers.	
	An-conditioning equipment. An nanoning units, Cooling Towers.	

After completing this course, the students will

- 1. know about the systems of Refrigeration, Air-Conditioning and Ventilation.
- 2. learn about different components of VCRS systems.
- 3. learn about different components of Vapour absorption refrigeration systems.
- 4. Know about the principles related to Psychometry
- 5. know about designing a Refrigeration and Air-Conditioning system.

Department of Mechanical Engineering

Subject Code: HM-HU601	Category: Basic Science Course
Subject Name: Humanities II (Operations	Semester: VI
Research)	
L-T-P: 3-0-0	Credit:3

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Module No	Description of Topic	Contact Hrs.
1 1	Introduction to Operations Research: Introduction, Historical Background,	Hrs.
-	Scope of Operations Research, Features of Operations Research, Phases of	-
	Operations Research, Types of Operations Research Models, Operations	
	Research Methodology, Operations Research Techniques and Tools,	
	Structure of the Mathematical Model, Limitations of Operations Research	
2	Linear Programming: Introduction, Linear Programming Problem,	
	Requirements of LPP, Mathematical Formulation of LPP, Case Studies of LPP,	8
	Graphical Methods to Solve Linear Programming Problems, Applications,	
	Advantages, Limitations. Graphical Analysis of Linear Programming	
	Problems: Introduction, Graphical Analysis, Some Basic Definitions,	
	Graphical Methods to Solve LPP, Some Exceptional Cases, Important	
	Geometric Properties of LPP. Simplex Method: Introduction, Standard Form	
	of LPP, Fundamental theorem of LPP, Solution of LPP - Simplex Method, The	
	Simplex Algorithm, Penalty Cost Method or Big M-method, Two Phase	
	Method, Solved Problems on Minimisation. Duality in Linear Programming	
	Problem: Introduction, Importance of Duality Concepts, Formulation of Dual	
3	Problem, Economic Interpretation of Duality, Sensitivity Analysis.	3
3	Transportation Problem: Introduction, Formulation of Transportation Problem (TP), Transportation Algorithm (MODI Method), the Initial Basic	3
	Feasible Solution, Moving Towards Optimality	
4	Assignment Problem: Introduction, Mathematical Formulation of the	3
4	Problem, Hungarian Method Algorithm, Travelling Salesman Problem	5
5	Project Management Using CPM-PERT: Project Scheduling and PERT-CPM:	5
J	Introduction, Basic Difference between PERT and CPM, PERT/CPM Network	5
	Components and Precedence Relationship, Project Management – PERT,	
	Float calculation and its importance. Cost reduction by Crashing of activity	
6	Queuing Theory: Basis of Queuing theory, elements of queuing theory,	3
÷	Operating characteristics of a queuing system, Queue discipline, Service	
	Mechanism, Classification of Queuing models, [M/M/1]:{//FCFS} Queue	
	System, numerical	

7	Inventory Management: Inventory classification, Different costs associated	4	
	to Inventory, Inventory models with deterministic demands (EOQ, EPQ and		
	price discount models), inventory classification systems		
8	3 Job Sequencing : Introduction to sequencing and scheduling models: n job		
	two machines problem, n job 3 machines problem		
9	Decision Theory: Introduction, Decision under certainty, Decision under risk,	3	
	Decision under uncertainty: Laplace criterion, MaxiMin criterion, MiniMax		
	criterion, savage MiniMax regret criterion, Hurwicz criterion, Decision tree		
10	Replacement Theory: Introduction, Replacement of capital equipment	3	
	which depreciated with time, replacement by alternative equipment, Group		
	and individual replacement policy		

1. Set up decision models and use some solution methods for finding solutions of problems. and to formulate and apply LPP and solution of LPP by Graphical Method and Simplex Method.

2. Methods of solving Transportation Problems and Assignment Problems.

3. To develop the network and to find the shortest path, critical path using PERT and CPM method, maximal flow of Network analysis by Floyd's Algorithm and Fulkerson's Algorithm 4. To develop the modelling and mathematical skills to analytically determine queuing models and finding various parameters associated with the model and applications of some real life situations.

5. Introduction to Non Linear Optimization and some methods of solving NLPP.

Department of Mechanical Engineering

Subject Code: ME-701	Category: Professional Core courses
Subject Name: Power Plant Engineering	Semester: VII
L-T-P: 4-0-0	Credit:4

Course Objectives:

To introduce students to different aspects of power plant engineering. To familiarize the students to the working of power plants based on different fuels. To expose the students to the principles of safety and environmental issues.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Power plant cycles, reheat, regenerative and binary vapor and co-	4
	generation cycles.	
2	Boilers: Definition, classification, fire tube and water tube boilers,	5
	mountings and accessories. Draft in boilers,	
	Performance of boiler - boilers efficiency, equivalent evaporation,	
	Losses in boilers.	
	Coal and combustion: Properties of coal, ultimate analysis and	
	proximate analysis, combination calculation.	
3	Fuel bed firing, PF firing and Fluidized bed boilers.	5
	Introduction to boiling and circulation in boilers.	
	Power station boilers - Benson, Lamont. Supercritical boiler.	
4	Boilers accessories: Super heater, economizer and air-pre heater.	5
	Handling of coal and ash.	
5	Steam turbine- i) parts and classification, ii) nozzles types, flow	7
	through nozzles and nozzle efficiency.	
	Impulse turbine - velocity diagram, work done and blade efficiency.	
6	Pressure compounding and velocity compounding of steam turbine.	4
7	Impulse reaction turbine - Velocity diagram, degree of reaction and	4
	Parsons turbine.	
8	Governing in Steam turbine.	5
	Condensers – Basic ideas.	
9	Power plant economics: load curve and various factors, cost of power	4
	generation.	
	Introduction to Hydel, Nuclear and Renewable power plants.	

Course Outcomes:

- 1. Describe and analyze different types of sources and mathematical expressions related to basic thermodynamics, Rankine cycle and various terms and factors involved with power plant operation.
- 2. Analyze the working and layout of steam power plants and the different systems comprising the plant and discuss about its economic and safety impacts
- 3. To properly explain concepts of the working principle of different types of firing in the boiler, its layout, safety principles and compare it with plants of other types.

- 4. Describe the working principle and basic components of the Steam Turbine and various types of analyses which are done on the compounding of the steam turbines.
- 5. Discuss the working principle and basic components of Power Plant Economics.

Department of Mechanical Engineering

Subject Code: ME702	Category: Professional courses
Subject Name: Advanced Manufacturing	Semester: VII
Technology	
L-T-P: 4-0-0	Credit:4

Course Objectives:

The objective of the course is to provide the students the knowledge of modern manufacturing processes such as Ultrasonic machining, Abrasive machining processes, Electrochemical machining, Electro discharge machining & their modifications into hybrid processes. Also to introduce them to advanced topics such as Laser beam welding/machining, Electron beam welding/machining & state of art in various research areas.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction to and scope of the subject of Advanced Manufacturing Technology	1
2	Manufacturing Systems and Automation : Job shop, Flowlines, Transfer lines, Project shop, Continuous processes, Cellular manufacturing system, Flexible Manufacturing System: Automation: (i) degree of automation and their justified application in different levels of production (ii) benefits and draw backs of employing automation (iii) examples of conventional non-automatic, semi- automatic and automatic machine tools (iv) extent of automation in transfer machines Integrated Manufacturing Production System: Steps involved in implementation, forming the linked-cell factory.	8
3	CNC machine tools and systems (i) types of automation ; fixed (or hard), programmable and flexible (ii) need and advantages of flexible automation (iii) basic principles of NC system Components and their functions in NC machines (i) Control ; MCU, DPU and CLU (ii) feed drives ; special motors and screw-nut system (iii) advantages of CNC over NC machines Basic systems of NC and CNC machines (i) coordinate system (ii) control – open loop and closed loop (iii) dimensioning – absolute and incremental CNC machine tools ; (i) structure and working principle (ii) examples and use of CNC machines (iii) machining centre (MC) – characteristics and applications. Control of tool – work travel ; (i) point – to – point and contouring (ii) interpolation – linear and circular Part programming for NC, CNC and MC systems Manual part programming (i) definition and codes used (ii) sequential steps (iii) examples ; part programming for machining in CNC lathes, drilling machines and milling. Computer aided part programming (i) definition and advantages (ii) programming languages (iii) statements in APT (iv) examples of CA part programming in APT	5

4	An overview of Non Traditional Manufacturing - Advantages over traditional, classification, characteristics of all processes: Abrasive Jet Machining (AJM) Working principle with help of layout, Applications, Effect of pressure, strand-off distance, grain size, abrasive flow rate on material removal rate (mrr) Mechanism of material removal. Advantages and limitations. Water Jet Machining: Introduction, Machining System, Basic principle, Process parameters, Applications, Advantages and Disadvantages. Ultrasonic Machining (USM) Schematic Diagram of USM- Working principle, Functions of each equipment used in the set up, Material removal process. Influence of Process parameters on (i) machining rate (ii) Surface finish and accuracy and repeatability, Applications. Plasma Arc Machining Basic principle, applications	6
5	Chemical Machining- Introduction, Blanking, Chemical Machining to multiple depths, Design factors, advantages and disadvantages. Electro-Chemical Machining- Process principle, Equipment, Applications. Electron Beam Machining Set up, Basic Principle, Applications. Electrical Discharge Machining (EDM) Diesinking- Basic principle, Schematic diagram of EDM setup, Dielectric fluid, Electrode materials. System for maintaining the spark gap constant, Effect of cutting parameterspulse-on-time, pulse off time, peak current setting, no load voltage, servo reference voltage, Applications. Wire-cut EDM: Schematic diagram, working principle Dielectric fluid, use. Advantages & Disadvantages of EDM, Applications.	6
6	Laser Beam Machining (LBM) Characteristics of Laser light, Basic mechanism of Ruby laser, Energy level diagram of Ruby laser. Carbon Dioxide laser, Energy level diagram. Commercial lasers available for machining, welding Heat treating, cladding. Hybrid Machining- Introduction, Methodology for Hybrid Machiningthermal interaction, chemical and electrochemical interaction, mechanical interaction, Electromechanical Discharge Machining (ECDM/ECAM), Electrical Discharge Machining with Ultrasonic Assistance (EDMUS).	6
7	Rapid Prototyping- Overview of Rapid Prototyping, Basic Process- CAD Model Creation, Conversion to STL format, Slice the STL File, Layer by layer construction, Clean and finish. Principles, systems, relative advantages and applications of the common RP methods ; (i) stereo lithography (SLG) (ii) selective laser sintering (SLS) (iii) fused deposition modelling (FDM) (iv) laminated objects manufacturing (LOM) (v) 3-D Inkjet Printing	6

- 1. Students will be able to categorize different material removal, joining processes as per the requirements of material being used to manufacture end product.
- 2. Students will be able to select material processing technique with the aim of cost reduction, reducing material wastage & machining time.

- 3. Students will be able to identify the process parameters affecting the product quality in various advanced machining of metals/ non-metals, ceramics and composites.
- 4. Students will be able to combine & develop novel hybrid techniques from the state of art techniques available.
- 5. Students will be able to perform process analysis taking into account the various responses considered in a process.

Department of Mechanical Engineering

Subject Code: ME703A	Category: Professional Elective Courses
Subject Name: Maintenance Engineering	Semester: VIII
L-T-P: 3-0-0	Credit:3

Course Objectives:

- 1. To provide knowledge on different aspects of repair and maintenance practised in industry.
- 2. To make students familiar with different repair and maintenance strategies used in industry.

Course	Content:	
Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Definitions of repair and maintenance; Importance of	8
	maintenance; Different maintenance systems- breakdown, preventive,	
	planned; predictive maintenance through condition monitoring;	
	Maintainability, failure pattern, availability of equipment/ systems,	
	design for maintainability.	
	Total Productive Maintenance (TPM): definition, objective &	
	methodology; Implementation of TPM; Lean maintenance; Overall	
	equipment effectiveness (OEE)	
2	Organizational structures for maintenance: Objective;	4
	Maintenance functions and activities; Organizational requirements;	
	Types of maintenance organizations, Manpower planning;	
2	Engineering stores & inventory management.	4
3	Economic Aspect of Maintenance: Life cycle costing; Maintenance	4
	cost & its impact; Maintenance budget; Cost control; Maintenance	
4	audit- Procedure, tools, planning, reports.	(
4	Function and use of Maintenance Equipment, Instruments &	6
	Tools: Facilities like NDT, painting, coating and cladding, Gas cutting and welding, crack detection, vibration monitor, balancing	
	equipment, compressor, basic machine tools, lubricators and	
	lubricants, chain pulley block, Tools like different types of wrenches,	
	torque wrench, pipe wrench, plier, screw driver, dimension measuring	
	instruments, feeler gauge, scraper, fitting shop tools, spirit level, hand	
	grinder & drill, screw jack, etc.	
5	Lubrication: Purpose & importance: Type of lubricants, Properties	4
	of lubricants; Types of lubrication and their typical applications,	
	lubrication devices, centralized lubrication system; Gasket, packing	
	and seals;	
6	Repair & Maintenance Procedures: Repair of cracks, threads, worn	10
	shafts, keyways, bush bearing, damaged gear tooth.	
	Assembly and dismantling of antifriction bearing; Maintenance of	
	bearing, clutches, coupling, brakes, Alignment of shafts, belt and	
	chain drives, gear drives, centrifugal pump, pipe and pipe fittings,	
	electrical wiring, isolators and main switches, small induction motors;	

Steps for installation of a machine.			
--------------------------------------	--	--	--

At the end of the course, the student will be able to:

- 1. Know different types of repair and maintenance procedures practised in industry.
- 2. Understand various condition monitoring techniques.
- 3. Understand different repair and maintenance strategies used in industry.
- 4. Understand the organizational structure of an industry for maintenance management and the economy involved in this.
- 5. Understand the repair methods of material handling equipments.

Department of Mechanical Engineering

Subject Code: ME 703 B	Category: Professional Elective courses
Subject Name: Renewable Energy Systems	Semester: VII
L-T-P: 3-0-0	Credit:3

Course Objectives:

The objectives of this course is understand need of these sources due to crisis of conventional sources and the familiarize with different non conventional sources such as Solar Thermal, Solar PV, Wind, Geothermal, Biomass etc

	Content:	~
Module	Description of Topic	Contact
No		Hrs.
1	Principles of Renewable Energy:	4
	i) The history of energy scene	
	ii) The energy future: energy and sustainable	
	Development and role of renewable energy	
	iii) Scientific Principles of renewable energy	
2	Review of principles of thermodynamics, fluid dynamics and heat	1
	transfer	
3	Solar radiation:	4
	i) Sun-Earth geometry	
	ii) Extraterrestrial Solar Radiation	
	iv) Measurement and estimation of solar radiation.	
4	Solar Water Heating:	5
	i) Flat Plate Collectors: Heat Transfer analysis, Testing	
	ii) Evacuated Tube Collectors	
5	Other Solar Thermal Applications:	3
	i) Air heaters	
	ii) Water Desalination	
	iii) Space Cooling	
	iv) Solar Concentrators	
	v) Solar ponds	
6	Photovoltaic Generation:	4
-	i) Photon absorption at Silicon p-n junction	
	ii) Solar Cell	
	iii) Application and Systems	
7	Wind Power:	3
	i) Turbine types & terms	C .
	ii) Mechanical & Electrical Power from Wind Turbines	
8	Biomass & Biofuels:	3
~	i) Use of Biomass	
	ii) Classification & Use of Biofuels.	
9	Wave Power & tidal Power: Basic Concepts	3
10	Ocean Thermal Energy Conversion	2
10	Geothermal Energy	2
11	oconomia Energy	<i>L</i>

12	Energy Storage	2	

- 1. Explain renewable energy sources & systems.
- 2. Apply engineering techniques to build solar, wind, tidal, geothermal, biomass, fuel cell, Hydrogen and sterling engine.
- 3. Analyze and evaluate the implication of renewable energy. Concepts in solving numerical problems pertaining to solar radiation geometry and wind energy systems.
- 4. Demonstrate self -learning capability to design & establish renewable energy systems.
- 5. Conduct assessment of the performance of solar PV, solar thermal and biodiesel systems

Department of Mechanical Engineering

Subject Code: ME704B	Category: Professional Elective courses
Subject Name: Advanced Welding	Semester: VII
Technology	
L-T-P: 3-0-0	Credit:3

Course Objectives:

- 1. To impart knowledge about different welding processes and their applicability.
- 2. To make the students understand the mechanism behind weld joints.
- 3. To impart ideas of different testing techniques of the welded joint..

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Review of welding processes, joint design.	3
2	Process descriptions of and parametric influences on fusion welding; arc welding- SMAW, stud arc welding, GMAW, GTAW and FCAW, solid state welding processes- pressure welding, friction welding, diffusion welding; resistance welding processes.	6
3	Arc welding- different types of equipment, power sources, arc characteristics, electrode selection	5
4	Critical and precision welding processes like: PAW, LBW, EBW, USW, friction stir welding, under-water welding. Welding of plastics, ceramics and composites	5
5	Welding metallurgy, HAZ, effects of different process parameters on the characteristics of weldment. Welding fixtures, welding automation and robotic applications	6 1
6	Weldability of plain carbon steels, stainless steel, cast iron, aluminium and its alloys.	4
7	Welding defects- types, causes, inspection and remedial measures; testing of welded joints by visual inspection, dye-penetration (DP) test, ultrasonics and radiography. Safe Practices in Welding.	3

Course Outcomes:

- 1. To familiarize different types of welding processes.
- 2. To familiarize the basic mechanism behind weld joint and influencing factors.
- 3. To impart the knowledge different tests to judge soundness of the weld joint.
- 4. To understand the limitations of welding.
- 5. To understand different position of welding.

Department of Mechanical Engineering

Subject Code: ME 705C	Category: Basic Science Course
Subject Name: Operations Research and	Semester: VII
Industrial Management	
L-T-P: 3-1-0	Credit:4

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Brief history of development of OR; Introduction to different OR problems/ techniques: Decision theory, Linear programming, Transportation and Assignment problems, Network analysis, Sequencing, Project scheduling, Integer programming, Non-linear programming, Inventory control, Queuing or Waiting line problems, Metaheuristics.	2
2	Decision Theory: Structure of the problem (decision table); Decision making under uncertainty with optimistic, pessimistic and average outcome criteria; Decision making under risk with expected value and expected loss criteria; Sequential decision using decision trees.	4
3	Linear Programming (LP); Nature of LP problems through examples; Formulation of LP Problems; Graphical solutions of two decision variable problems; Properties of a solution to LP problems: convex solution space and extreme point solution; General form of LP model; Simplex method and its meaning; Steps of simplex method in tabular form; Solving LP problems by Simplex Method; Sensitivity analysis.	7
4	Transportation & Assignment Problems: Nature of a transportation or distribution problem; Tabular representation of a transportation problem; North-West Corner initial solution; Stepping stone method; Concept of dummy source or destination; Vogel's approximation method. Nature of an Assignment problem; Tabular representation; Hungarian method for solving assignment problems.	5
5	Network Analysis: Network models and terminologies like arcs, nodes, paths, tree, spanning tree; shortest path/route problem; The minimum spanning tree problem; The maximal flow problem.	4
6	Waiting line Problems: Structure of a waiting line System: Single-channel waiting line, process of arrivals, distribution of service times, queue discipline, steady stage operation; Single channel model with Poisson arrivals and exponential service time; Multiple channel model with Poisson arrival and exponential service times; Single channel model with Poisson arrivals and arbitrary service time (M/G/1); Economic analysis of waiting lines.	6
7	Non-Linear Programming: Graphical illustration of a non-linear programming problem; Unconstrained optimization by (i) direct search	8

method, (ii) steepest decent method; Constrained optimization by lagrange	
multipliers; Integer linear programming by branch & bound technique;	
Dynamic programming problems and their characteristics; Bellman's	
principle of optimality; solving (i) Stagecoach problem, (ii) Knapsack	
problem.	

1. Set up decision models and use some solution methods for finding solutions of problems. and to formulate and apply LPP and solution of LPP by Graphical Method and Simplex Method.

2. Methods of solving Transportation Problems and Assignment Problems.

3. To develop the network and to find the shortest path, critical path using PERT and CPM method, maximal flow of Network analysis by Floyd's Algorithm and Fulkerson's Algorithm 4. To develop the modelling and mathematical skills to analytically determine queuing models and finding various parameters associated with the model and applications of some real life situations.

5. Introduction to Non Linear Optimization and some methods of solving NLPP.

Subject Code: HU ME801	Category: Humanities and social science	
	including management course	
Subject Name: Economics for engineers	Semester: VIII	
L-T-P: 3-0-0	Credit:3	

Department of Mechanical Engineering

Course Objectives:

To make general awareness among budding engineers regarding basic principles of economics and that needed to use in an industry. To give basic understanding of engineering costs, estimation, depreciation analysis and basic accounting principles.

Module	Description of Topic	Contact
No		Hrs.
1	Economic Decisions Making- Overview, Problems, Role, Decision making process.	2
2	 Engineering Costs & Estimation- Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity Costs, Recurring and Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types of Estimate, Estimating Models - Per- Unit Model, Segmenting Model, Cost Indexes, Power- Sizing Model, Improvement & Learning Curve, Benefits. 	4
3	Present Worth Analysis: End-of-Year Convention, Viewpoint of Economic Analysis Studies, Borrowed Money Viewpoint, Effect of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques, Multiple Alternatives.	4
4	 Cash Flow & Rate of Return Analysis- Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing an Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity and Break Even Analysis. Economic Analysis in the Public Sector- Quantifying and Valuing Benefits & drawbacks. 	4
5	 Depreciation- Basic Aspects, Deterioration & Obsolescence, Depreciation and Expenses, Types of Property, Depreciation Calculation Fundamentals, Depreciation and Capital Allowance Methods, Straight Line Depreciation Declining Balance Depreciation, Common Elements of Tax Regulations For Depreciation and Capital Allowances. 	4
6	Inflation and Price Change- Definition, Effects, Causes, Price Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes in Engineering Economic Analysis, Cash Flows that inflate at different Rates.	3
7	Accounting- Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	3

On successful completion of this course, student should be able to:

- To understand Economic Decisions Making criteria
 To know basic principles of engineering costs, estimation and depreciation analysis.
 To understand basic accounting principles.

Department of Mechanical Engineering

Subject Code: ME802b	Category: Professional Elective courses
Subject Name: Industrial Robotics	Semester: VIII
L-T-P: 3-0-0	Credit:3

Course Objectives:

- 1. Learn about the types of robots used in material handling systems.
- 2. Understand the use of vision systems in automation systems.
- 3. Gain knowledge on the different methods of material handling.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction: Brief history of robotics; definition of robot; Main components of robot: manipulator, sensors, controller, power conversion unit; Robot geometry: types of joints, workspace, number of degrees of freedom; Common configurations used in arms: rectangular, cylindrical, spherical, joined; Classification of robot according to coordinate system: cartesian, cylindrical, polar, articulated or jointed; Classification of robots according to control method: non-servo, servo; Robot specifications: payload, accuracy, repeatability resolution, maximum tip speed, reach stroke:	4
2	Robot End Effector End effector: definition, gripper, tools; Gripper : main parts, source of power; Types of grippers: mechanical grippers, vacuum cups, magnetic grippers, adhesive grippers, Hooks, scoops, ladles, universal gripper; Robot Tools: Spot welding gun, pneumatic impact wrench, pneumatic nut runner, inert gas welding torch, heating torch, grinder, spray painting gun.	4
3	Robot Actuators: Definition; Characteristics: power to weight ratio, stiffness, compliance, reduction gears; Conventional actuators: hydraulic actuator, pneumatic actuator, electric motor, direct drive motor, stepper motor, servo motor; Special actuators: magnetostrictive, shape memory alloy, elastomer.	4
4	Robot Sensors: Definition; of Sensor and transducer; Calibration; Basic categories of measuring devices: analog, discrete; Main types of sensors: position, velocity, acceleration, force and pressure, torque, slip and tactile, proximity. Definition of digital image, generation of digital image; Robot Vision System: definition, use, functions, components, classification; vision cameras; Techniques of image processing and analysis: Image data reduction, segmentation, feature extraction, object recognition; Application of robot vision system.	9
5	Robot Kinematics:	7

	Definition of Robot kinematics, Tool frame and base frame. Word – coordinate system, Direct kinematics, Inverse kinematics, Describing position and orientation of an object in space, Homogenous transformation, Translational transformations, Rotational transformations, Denavit- Hartenberg representation.	
6	Robot Programming Definition of robot programming; Different methods of robot programming: teach-pendant programming, key board programming; Programming languages: VAL II, AML/2, ARM BASIC	
7	Industrial Applications of Robots Welding, Spray painting, Grinding;Material Transfer: machine loading and unloading, Processing operation; Assembly operation; Inspection. Special applications: underwater prospecting and repairs, Mining, Space Exploration, Surgery.	

- 1. Differentiate the various types of Industrial Robots and their architecture.
- 2. Apply the concepts of image processing for robotic inspection systems.
- 3. Analyze the applications of robots in various industrial applications.
- 4. Design and fabricate simple grippers for pick and place application.
- 5. Identify the right Robot for a given industrial application.

Department of Mechanical Engineering

Subject Code: ME-802C	Category: Professional Elective
Subject Name: Energy Conservation and	Semester: VIII
Management	
L-T-P: 3-0-0	Credit:3

Course Objectives:

To impart basic knowledge to the students about current energy scenario, energy conservation, audit and management.

To inculcate among the students systematic knowledge and skill about assessing the energy efficiency, energy auditing and energy management.

Course Content:

Module	Description of Topic	Contact	
No			
1	The Energy Resources; Finite & Renewable	3	
2	The Need for Energy Conservation- estimation of Finite fuel	3	
	resource; Hubbert's model for oil reserve		
3	Total Energy Concept- CHP Cycles & their applications 6		
4	Waste Heat Recovery; Waste Heat Exchangers;	8	
	Commercial Waste Heat Recovery Devices- Recuperators,		
	Regenerative Heat Exchangers, Heat Pipes		
5	Industrial Energy Conservation- Industrial Insulations; Case		
	Studies for HVAC, Air Compressor, Mechanical Handling &		
	Other Systems		
6	Energy Audit; Basic Steps; Graphical representation; Case Studies	4	
7	The Economics of Energy Saving Schemes; Costs; investment	4	
	analysis		

Course Outcomes

- 1. Conceptual knowledge of the technology, economics and regulation related issues associated with energy conservation and energy auditing
- 2. Ability to analyse the viability of energy conservation projects
- 3. Capability to integrate various options and assess the business and policy environment regarding energy conservation and energy auditing
- 4. Advocacy of strategic and policy recommendations on energy conservation and energy auditing.
- 5. Students will exhibit the ability to integrate technical, economic, social and regulatory frameworks for power sector planning and resource management.

Department of Mechanical Engineering

Subject Code: ME803A	Category: Professional Elective Courses
Subject Name: Safety and Occupational Health	Semester: VIII
L-T-P: 3-0-0	Credit: 3

Course Objectives:

- 1. Students will be able to recognize and evaluate occupational safety and health hazards in the workplace
- 2. Students will be able to determine appropriate hazard controls following the hierarchy of controls.
- 3. Students will furthermore be able to analyze the effects of workplace exposures, injuries and illnesses, fatalities
- 4. Students will furthermore be able to analyze the methods to prevent incidents using the hierarchy of controls, effective safety and health management systems and task-oriented training.

Module	Topics	Number of
No.		Classes
1	Development of industrial safety: Developments in Occupational	02
	Health, Occupational Safety and Health in India	
2	Accidents and their prevention: Theory of accident, Anatomy of an	06
	accident, How Accidents are Caused? Cost of Accidents, Principles of	
	Accident Prevention, Techniques of Accident Prevention, Safe Work	
	Environment, Housekeeping, Job Safety Analysis	
	Investigation of Accidents, Ergonomics, Personal Protective	
	Equipment, Promotion of Health and Safety, Basic Safety	
	Programming	
3	Fire hazard: Types of fire, Fire Hazards, Fire Explosion, fire	06
	prevention, Means of Escape in Case of Fire Inspection Safety	
	Supervision Safety, Responsibility Safety Inspection, Fire prevention	
	authorities, Rules Safety Training Safety, Appraisal Safety	
	Communication Safety Audit	
4	4. Occupational health and safety: Occupational Health,	06
	Occupational Health Services in Places of Employment, Occupational	
	Physician Occupational Health in Developing Countries,	
	Occupational Safety, Occupational Safety in Developing Countries,	
	Promoting Occupational Health and Safety, Work Related Diseases,	
	Occupational Health Hazards Recognition of Hazards, Industrial	
	Hygiene, Occupational Diseases, basics of OHSAS 18001	
5	Health and safety at workplaces: Health and Safety hazards,	06
	Occupational Health Requirements, Occupational Safety	
	Requirements, Occupational Welfare Requirements, Abstracts and	

	Notices, Obligations of a Worker, Obligations of Occupier, Personal protective equipment, Causes of Accidents, Prevention of Accidents, Safety Legislation, Safety Guidelines, emergency actions, related acts (related to chemical processes, mines, workshop practices,	
	construction work, electrical installations)	
6	Health and safety management: Basics of Safety management, Role of safety supervisor, planning for safety, Safety Policies, Safety Promotion, Safety Committee, safety education & training, Health and Safety Process, Measuring Safety, Risk Management and Loss Control	04
7	Accident compensationBrief introduction to different acts –The Dangerous Machines (Regulations) Act, 1983, The Employers'Liability Act, 1938; The (Indian) Fatal Accidents Act, 1855; ThePublic Liability Insurance Act, 1991, The Workmen's CompensationAct, 1923,The Employees' State Insurance Act, 1948, Role of National SafetyCouncil, International labour office.	06
	TOTAL CLASSES	36

By the end of this course, a student should:

1. Evaluate workplace to determine the existence of occupational safety and health hazards

2. Identify relevant regulatory and national consensus standards along with best practices that are applicable.

- 3. Select appropriate control methodologies based on the hierarchy of controls
- 4. Analyze injury and illness data for trends.
- 5. Understand the different labour law and company acts.

Department of Mechanical Engineering

Subject Code: ME803D	Category: Professional Elective Courses
Subject Name: Automobile Engineering	Semester: VIII
L-T-P: 3-0-0	Credit: 3

Course Objectives:

- 1. Introduction to engineering analysis of the automobile and its sub-systems.
- 2. Application of engineering principles to automotive design.
- 3. Familiarization with modeling and analysis methods.
- 4. Familiarization with the automotive industry and its terminology.

Module No.	Topics	Number of Classes
1	Introduction: History & Development of Automobile. various sub system of Automobile.	01
2	Prime Mover: Engine for Two –Wheeler & Three- Wheeled vehicles, Engine for passenger cars, commercial and other vehicle, Fuel system for carbureted engine, MPFI engine and Diesel engine, Lubrication and cooling system.	05
3	Auto Electrical: Electric Motor as prime mover, Battery, generator, Ignition system, starting system, lighting & signaling	06
4	Steering System: Davis steering & Ackerman steering system. Rack & pinion, cam & lever, worm & sector system.	03
5	Transmission System: Flywheel & clutch. Gearbox sliding and constant mesh type, Automatic Transmission, Universal joint, Propeller shaft.	06
6	Differential & Axle: Construction & function of differential, Different types of front & rear axles.	03
7	Suspension System: Conventional and independent suspension system, application.	03
8	Brake System: Disc & drum brake, Hydraulic brake, Parking brake. Stopping distance.	03
9	Power Requirement: Various resistances such as air resistance, gradient resistance, rolling resistance. Tractive effort. Torque- Speed curve. Horse power calculation	04
10	Maintenance of Vehicle.	02
	TOTAL CLASSES	36

On successful completion of the course, the student will be able to,

1. Demonstrate the vehicle construction, chassis, lubrication system and cooling system in automobile, 3-way catalytic converter.

2. Describe the principle and working of Carburetors, CRDI, MPFI, electronic fuel injection system and Ignition system.

3. Differentiate between clutch, gear box, rear axle drives, fluid flywheel, and torque converter.

4. Identify the wheels, tires, steering gear box, suspension system-telescopic, and leaf spring.

5. Appraise the recent trends in alternate fuels and automobile safety system.

Department of Chemistry

Course Code : CE(BS)301	Category : Basic Science Courses
Course Title : Biology (Biology for Engineers)	Semester : Third
Duration: 2L+1T	Credit:3

Course Objectives:

To introduce modern biology with an emphasis on evolution of biology as a multi-disciplinary field and to make students aware of application of engineering principles in biology and engineering robust solution inspired by biological examples.

Module	Description of Topic	Contact
No		Hrs.
1	Introduction Purpose: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlightthe fundamental importance of observations in any scientific inquiry	2
2	Inquiry Classification: Purpose: To convey that classification <i>per se</i> is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity-Unicellular or multicellular (b) ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus.	3
3	Genetics Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using	4

	human genetics.	
4	Biomolecules Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	4
4	Macromolecular analysis: Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	5
5	Enzymes Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis.	4
6	Information Transfer Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structurefrom single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	4
7	Macromolecular analysis Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements	5
7	ImmunologyPurpose: How does the immune system work? What are the molecular and cellular components and pathways that protect an organism from infectious agents or cancer? This comprehensive course answers these questions as it explores the cells and molecules of the immune system.Immunology- Self vs Non-self, pathogens, human immune system, antigen-antibody reactions.	5
8	MetabolismThermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge	4
9	Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3

1. To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.

- 2. To convey that classification *per se* is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted
- **3.** To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and the molecular basis of coding and decoding genetic information is universal
- **4.** To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine and to analyses biological processes at the reductionist level
- 5. To convey that without catalysis life would not have existed on earth and to study the fundamental principles of energy transactions are the same in physical and biological world

Engineering Mechanics Code: CE (ES) 301 Prerequisites: Physics, Mathematics

Course Outcomes: At the end of the course, the student will be able to:

- CO1. Determine the nature of forces and its final effects and also understand the effect of friction force
- CO2. Understand the basic principles of structural analysis
- CO3. Understand the basic concept of centre of gravity
- CO4. Understand the principle of virtual work and energy method
- CO5. Understand the basic concept of particle dynamics and kinetics of rigid body

CO6. Solve simple problems of mechanical vibration

CE(ES)301	Engineering Mechanics	3L + 1T =	4 Credits
Module 1	Introduction to Engineering Mechanics Force Systems Basic concepts, Particleequilibrium in 2-D & 3-D; Rigid Bo System of Forces, Coplanar Concurrent Forces, Components in Space – Resulta Forces and its Application; Couples and Resultant ofForce System, Equilibriur Forces, Free body diagrams, Equations of Equilibrium ofCoplanar System Systems: Static Indeterminacy	6L	
Module 2	Friction Types of friction, Limiting friction, Laws of Friction, Static andDynamic Frict Bodies, wedge friction, screw jack & differential screw jack;	tion; Motion of	3L
Module 3	Basic Structural Analysis Equilibrium in three dimensions; Method of Sections; Method of Joints; How to member is in tension or compression; Simple Trusses; Zeroforce members; Be- beams; Frames & Machines;		4L
Module 4	Centroid and Centre of Gravity Centroid of simple figures from first principle,centroid of composite sections; Ce and its implications; Area moment of inertia-Definition, Moment of inertia of from first principles, Theorems of moment of inertia,Moment of inertia of standar composite sections: Mass moment inertia of circularplate, Cvlinder, Cone, Sphere	f plane sections ard sections and	5L
Module 5	Virtual Work and Energy Method- Virtual displacements, principle of virtual work forparticle and ideal system of degrees of freedom. Active force diagram, systems withfriction, mechar Conservative forces and potential energy (elastic and gravitational),energy equilibrium. Applications of energy method for equilibrium. Stability of equilibrium	of rigid bodies, nical efficiency. y equation for	4L
Module 6	Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular,path, and polar co curvilinear motion; Relative and constrained motion; Newton's 2 la nd (rectang polar coordinates). Work-kinetic energy, power, potentialenergy.Impulse-mon angular); Impact (Direct and oblique).	ordinates). 3-D gular, path, and	4L
Module 7	Introduction to Kinetics of Rigid Bodies Basic terms, general principles indynamics; Types of motion, Instantaneous centr plane motion and simple problems;D'Alembert's principle and its applications i and connected bodies; Work energyprinciple and its application in plane motic bodies; Kinetics of rigid body rotation;	in plane motion	5L
Module 8	Mechanical Vibrations Basic terminology, free and forced vibrations, resonance and its effects; Deg Derivation for frequency and amplitude of freevibrations without damping and s freedom system, simple problems, types of pendulum, use of simple, compor pendulums;	single degree of	5L
Tutorials	From the above modules covering, To find the various forces and angles includir resultants in various parts of wall crane, roof truss, pipes, etc.; To verify the line various forces; To find coefficient of friction between various materials on incl bodydiagrams various systems including block-pulley; To verify the principle of discapparatus; Helical block: To draw a load efficiency curve for a screw jack	of polygon on ined plan; Free	6L

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome↓												
CO 1	3	1							1			
CO 2	3	1	1	1					2			
CO 3	3	1							1			
CO 4	3	1	1						1			
CO 5	3	1	1	1					1			
CO 6	3	1	1	1	1				2			

1: Slightly 2: Moderately 3: Substantially

CO-PO MAPPING

Introduction to Civil Engineering Code: CE(HS)302 Prerequisites: Basic Science knowledge

Course Outcomes:

At the end of the course, the student will be able to:

CO1. Understand basic disciplines of civil engineering, History of civil engineering and ancient monuments and the concept of national planning for construction and infrastructure development.

CO2. Understand the fundamentals of architecture & town planning, fundamentals of building materials and construction management.

CO3. Understand the fundamentals of environmental engineering and sustainability.

CO4. Understand the basic concepts of Geotechnical, hydraulics, water resource and ocean engineering.

CO5. Understand the fundamentals of Power plant structure, structural engineering, surveying and traffic & transportation engineering.

CO6. Understand the fundamentals of repairs and rehabilitation of structures.

CO7. Understand the basic principles of computational method, IT, IOT in civil engineering.

CO8. Understand the application of civil engineering knowledge in industry, basics of professionalism

CE(HS)302	Introduction to Civil Engineering(1L+1T)	2 Credits
Module 1	Basic Understanding: What is Civil Engineering/ Infrastructure? Basics of Engineering and Civil Engineering; Broad disciplines of Civil Engineering; Importance of Civil Engineering, Possible scopes for a career Tutorials Develop a matrix of various disciplines and possibleroles for engineers in each	1L
Module 2	History of Civil engineering: Early constructions and developments over time; Ancient monuments & Modern marvels; Development of various materials of construction and methods of construction; Works of Eminent civil engineers Tutorials Identify 10 ancient monuments and ten modern marvels and list the uniqueness of each	1 L
Module 3	Overview of National Planning for Construction and Infrastructure Development; Positionof construction industry vis-à-vis other industries, five year plan outlays for construction; currentbudgets for infrastructure works Tutorials Develop a Strategic Plan for Civil Engineering worksfor next ten years based on past investments andidentify one typical on-going mega project in eacharea	1 L
Module 4	 Fundamentals of Architecture & Town Planning: Aesthetics in Civil Engineering, Examples of great architecture, fundamentals of architectural design & town planning; BuildingSystems (HVAC, Acoustics, Lighting, etc.); LEED ratings; Development of Smart cities Tutorials Identify ten best civil engineering projects with highaesthetic appeal with one possible factor for each; Listdown the possible systems required for a typical SmartCity 	1L
Module 5	Fundamentals of Building Materials: Stones, bricks, mortars, Plain, Reinforced &PrestressedConcrete, Construction Chemicals; Structural Steel, High Tensile Steel, Carbon Composites;Plastics in Construction; 3D printing; Recycling of Construction & Demolition wastes Tutorials Identify three top new materials and their potential inconstruction; Visit a Concrete Lab and make a report	2 L

Module 6	Basics of Construction Management & Contracts Management: Temporary Structures in	2 L
	Construction; Construction Methods for various types of Structures; Major Construction equipment; Automation & Robotics in Construction; Modern Project management Systems; Advent of Lean Construction; Importance of Contracts Management	
	Tutorials	
Module 7	Identify 5 typical construction methods and list theiradvantages/ positive features Environmental Engineering & Sustainability: Water treatment systems; Effluent treatment	2L
	systems; Solid waste management; Sustainability in Construction	
	Tutorials	
	Sustainability principles, Sustainable builtenvironment, water treatment systems, and good practices of wastewater management. examples of Solid andhazardous waste management, Air pollution and control	
Module 8	Geotechnical Engineering: Basics of soil mechanics, rock mechanics and geology; various types of foundations; basics of rock mechanics & tunnelling	2 L
	Tutorials	
	List top five tunnel projects in India and their features;collect and study geotechnical investigation report of any one Metro Rail (underground) project; Visit aconstruction site and make a site visit report	
Module 9	Hydraulics, Hydrology &Water Resources Engineering: Fundamentals of fluid flow, basics ofwater supply systems; Underground Structures; Underground Structures Multi-purpose reservoirprojects	1 L
	Tutorials	
	Identify three river interlinking projects and theirfeatures; visit a Hydraulics Lab and make a report	
Module 10	Ocean Engineering: Basics of Wave and Current Systems; Sediment transport systems; Ports &Harbours and other marine structures	1 L
	Identify 5 typical ports in India and list the structuresavailable in them; Visit a related/similar facility, if possible in nearby place and make a report	
Module 11	Power Plant Structures: Chimneys, Natural & Induced Draught Colling towers, coal handling	1 L
	systems, ash handling systems; nuclear containment structures; hydro power projects	
	Tutorials Collect the typical layout for a large thermal powerplant and a large hydro power plant and identify all thestructures and systems falling in them.	
Module 12	Structural Engineering: Types of buildings; tall structures; various types of bridges; Water retaining structures; Other structural systems; Experimental Stress Analysis; Wind tunnel studies;	3 L
	Tutorials	
	Identify 5 unique features for typical buildings, bridges, tall structures and large span structures; VisitStructures Testing Lab/facility and make a report	
Module 13	Surveying & Geomatics: Traditional surveying techniques, Total Stations, Development of Digital Terrain Models; GPS, LIDAR;	1 L
	Tutorials	
	Collect visual representations prepared by a TotalStation and LIDAR and compare; Study typicalGoogle street map and Google Earth Map and studyhow each can facilitate the other	
Module 14	Traffic &Transportation Engineering: Investments in transport infrastructure development inIndia for different modes of transport; Developments and challenges in integrated transport	1 L
	development in India: road, rail, port and harbour and airport sector; PPP in transport sector;	
	Intelligent Transport Systems; Urban Public and Freight Transportation; Road Safety underheterogeneous traffic; Sustainable and resilient pavement materials, design, construction andmanagement; Case studies and examples.	
	Tutorials	
	Investments in transport infrastructure; Developmentsand challenges; Intelligent Transport Systems; SmartCities, Urban Transport; Road Safety; Sustainable andresilient highway design principles; Plan a sustainabletransport system for a city; Identify keyfeatures/components in the planning and design of agreen field bichway/airport/port/railway and the cost accompany.	
Module 15	planning and design of agreen field highway/airport/port/railway and the cost –economics. Repairs & Rehabilitation of Structures: Basics of corrosion phenomena and other structural	1 L
	distress mechanisms; some simple systems of rehabilitation of structures; Non-	
	Destructivetesting systems; Use of carbon fibre wrapping and carbon composites in repairs.	
	Destructivetesting systems; Use of carbon fibre wrapping and carbon composites in repairs. Tutorials Collect the history of a major rehabilitation project andlist the interesting features	

	Engineering- Finite Element Method, Computational Fluid Dynamics; Computational Geotechnical Methods; highway design (MX), Building Information Modelling; Highlighting typical available software systems (SAP, STAAD, ABAQUS, MATLAB, ETAB, NASTRAN, NISA, MIKE 21, MODFLOW, REVIT, TEKLA, AUTOCAD,GEOSTUDIO, EDUSHAKE, MSP, PRIMAVERA, ArcGIS, VisSIM,)	
	Tutorials Visit an AutoCad lab and prepare a report; Identify teninteresting software systems used in	
	Civil Engg andtheir key features	
Module 17	Industrial lectures: Case studies of large civil engineering projects by industry professionals, covering comprehensive planning to commissioning;	2 L
	Tutorials	
	For each case study list the interesting features	
Module 18	Basics of Professionalism: Professional Ethics, Entrepreneurial possibilities in Civil Engineering, Possibilities for creative & innovative working, Technical writing Skills enhancement; Facilities Management; Quality & HSE Systems in Construction Tutorials	3 L
	List 5 cases of violation of professional ethics and listpreventive measures; Identify 5 interesting projects and their positive features; Write 400 word reports on one ancient monument and a modern marvel of civilengineering	

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome↓												
CO 1	1											
CO 2	2						1				2	
CO 3	2	1					2					
CO 4	2	1					1					
CO 5	2	1	1									
CO 6	2											
CO 7	2	1			1							
CO 8	1							3			2	

1: Slightly 2: Moderately 3: Substantially

Department of Civil Engineering

Subject Code: CE(BS)302	Category: Basic Science Course
Subject Name: Mathematics-III (Transform &	Semester: III
Discrete Mathematics)	
L-T-P: 2-0-0	Credit:2

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Module No	Description of Topic	Contact Hrs.
1	Transform Calculus 1:- Polynomials – Orthogonal Polynomials – Lagrange's, Chebysev Polynomials; Trigonometric Polynomials; place Transform, Properties of Laplace Transform, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs and PDEs by Laplace Transform method.	6
2	Transform Calculus-2: Fourier transforms, Z-transform and Wavelet transforms: properties, methods, inverses and their applications.	6
3	Sets, relations and functions : Basic operations on sets, Cartesian products, disjoint union (sum), and power sets. Different types of relations, their compositions and inverses. Different types of functions, their compositions and inverses	4
4	Propositional Logic : Syntax and semantics, proof systems, satisfiability, validity, soundness, completeness, deduction theorem, etc. Decision problems of propositional logic. Introduction to first order logic and first order theory	4
5	Partially ordered sets :-Complete partial ordering, chain, lattice, complete, distributive, modular and complemented lattices .Boolean and pseudo Boolean lattices	4
6	Algebraic Structures: Algebraic structures with one binary operation – semigroup, monoid and group. Cosets, Lagrange's theorem, normal subgroup, homomorphic subgroup. Congruence relation and quotient structures. Error correcting code. Algebraic structures with two binary operations- ring, integral domain, and field. Boolean algebra and Boolean ring (Definitions and simple examples only).	4
7	Introduction to Counting Basic counting techniques – inclusion and exclusion, pigeon-hole principle, permutation, combination, summations. Introduction to recurrence relation and generating functions.	3
8	Introduction to Graphs : Graphs and their basic properties – degree, path, cycle, subgraph, isomorphism, Eulerian and Hamiltonian walk, trees.	3
Course Outcomes:

On completion of the course students will be able to

1. Develop the skill of evaluating Laplace and inverse Laplace transform to solve ODEs and PDEs.

2. On completion of the course students will express a logic sentence in terms of predicates, quantifiers, and logical connectives.

3. Derive the solution for a given problem using deductive logic and prove the solution on based of a logical inference.

4. Classify its algebraic structure for a given a mathematical problem.

5. Develop the given problem as graph networks and solve with techniques of graph theory.

Course Name	ENERGY SCIENCE & ENGINEERING
Course Code	CE(ES)302
Course Credit	2
Contact Hour	2L (Total: 36L)

Prerequisite : Basic Science Subjects

Course Objective

To familiarize with the all forms of renewable energy Resources.

The objectives of this course is understand need of these sources due to crisis of conventional sources and the familiarize with non conventional sources. To impart knowledge on the atmosphere and its present condition and, global warming. To learn the green buildings concepts applicable to alternate design. To learn sufficient knowledge on energy monitoring methods and optimal regulations. To Comprehend the techniques available for energy conservation in electrical utilities.

Course Outcome

On completion of the course students will be able to

CO1. To get a familiar knowledge in various forms of energy resources.

Explain renewable energy sources & systems.

- CO 2. Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel cell, Hydrogen and sterling engine.
- CO 3. Analyze and evaluate the implication of renewable energy. Concepts in solving numerical problems pertaining to solar radiation geometry and wind energy systems.
- CO 4. Technical aspects of Global Warming will make them understand the impact they have

on climate.Will be familiar with climate responsive building design and basic concepts.

CO 5. Familiarized about the energy sources, energy acts, and energy auditing and energy

management methods. Perform energy audit in an Industry

CE(ES)302	Energy Science & Engineering	1L + 1T =	2 Credits
Module 1	Introduction to Energy Science Scientific principles and historical interpretation to place energy use in the context of pressing societal, environmental and climate issues; I energy systems and resources; Introduction to Energy, sustainability & the enviro		3L
	Tutorials:Compile a World map showing Energy Reserves by source, Total Energy consumption. Per capita energy consumption and Carbon Footprint		
Module 2	Energy Sources Overview of energy systems, sources, transformations, efficiency, andstoragy (coal, oil, oil-bearing shale and sands, coal gasification) - past, present & futur alternatives for fossil fuels - biomass, wind, solar, nuclear, wave hydrogen;Sustainability and environmental trade-offs of different energy system for energy storage or regeneration (Ex. Pumped storage hydro power projects, superce energystorages, high efficiency batteries)	re,Remedies & e, tidal and as; possibilities	4L
	Tutorials:Compile a Word Map showing Alternative Energy sourceusage; Con diagram for a Pumped Storageproject; Collect details of a typical North Sea oil pl Compile a map of India showing exiting potential and utilizedpotential for hydrothe pros and cons for Thermal.hydro. nuclear and solar power projects.	atform.	
Module 3	Energy & Environment Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon for consumptionand sustainability; introduction to the economics of energy; How system determinesproduction and consumption; linkages between economic and outcomes; How futureenergy use can be influenced by economic, environment research policy	5L	
	Tutorials:Study the functioning of an Electro Static Precipitator in athermal pow the uses of coarse and fine Fly Ashfrom thermal power plants. Compile the sa indesign and construction of a reactor containment building		
Module 4	Civil Engineering Projects connected with the Energy Sources Coal miningtechnologies, Oil exploration offshore platforms, Underground and pipelines, solarchimney project, wave energy caissons, coastal installations for wind mill towers; hydropower stations above-ground and underground along dams, tunnels, penstocks, etc.;Nuclear reactor containment buildings and associ design and construction constraintsand testing procedures for reactor containn Spent Nuclear fuel storage and disposalsystems	10L	
	Tutorials:Compile a process diagram for a typical underground hydropower p details of a model solar chimneyproject; collect details of a wave ene Vizhiniam:Collect details of the Kalpasar (Tidal energy) project	•	
Module 5	Engineering for Energy conservation Concept of Green Building and GreenArchitecture; Green building concepts (encompasses everything from the choice ofbuilding materials to where a build how it is designed and operated); LEED ratings;Identification of energy related of represent the breath of the industry and prioritizingthese as candidates; Em analysis and use as a tool for measuring sustainability. EnergyAudit of optimization of energy consumption.	8L	
	Tutorials:Draw a typical geometrical orientation of a house in your areato avoid in the bed room in the evening;Identify typical examples of Indian bu variousLEED ratings; List various building materials with theirembodied energy Energy Audit of yourDepartmental Building in the college	ildings having	

Mapping of Course outcomes with Program outcomes :

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3			1	2	1	2	3	3	3
CO 2	3	3	2									
CO 3	3	2	1	2	1			1		2	3	2
CO 4	2	1	1	1	1	-	1	-	-	-	-	-
CO 5	1	1	3	3	3	2	3	3	2	3	3	2

1.Slightly 2.Moderately 3.Substantially

Computer-Aided Civil Engineering Drawing Code: CE (ES) 392

Prerequisites: knowledge in Geometrical Drawing, Computer Operation and Basic Engineering Drawing

Course Outcomes: At the end of the course, the student will be able to:

CO1 - Operate standard Computer Aided Design software

- **CO2-** Study and interpret civil engineering drawing
- CO3- Gain knowledge on masonry brickwork
- **CO4-** Prepare details drawing of building

CO5- Understand and prepare 3D modelling of buildings

CE(ES)392	Computer-aided Civil Engineering	1L + 2P	2 Credits
	Drawing		
Module 1	INTRODUCTION Introduction to concept of drawings, Interpretation of typicaldrawings, Planning show information concisely and comprehensively; optimallayout of drawings Introduction to computer aided drawing, co-ordinate systems, reference planes. Initial settings, Drawing aids, Drawing basic entities, Modifycommands, Laye	and Scales; Commands:	2L
Module 2	Dimensioning, Blocks, Drawing presentation norms andstandards. SYMBOLS AND SIGN CONVENTIONS Materials, Architectural, Structural, Electricaland Plumbing symbols. Rebar d structural steel fabrication and connections drawingsymbols, welding symbols; c standards	U	2 L
Module 3	MASONRY BONDS English Bond and Flemish Bond – Corner wall and Cross walls -One brick wall half brick wall	and one and	1 L
Module 4	BUILDING DRAWING Terms, Elements of planning building drawing, Methods ofmaking line drawing drawing. Site plan, floor plan, elevation and section drawingof small residenti Foundation plan. Roof drainage plans. Depicting joinery, standardfittings & fixtu Use of Notes to improve clarity	ial buildings.	5 L
Module 5	PICTORIAL VIEW Principles of isometrics and perspective drawing. Perspective viewof building. Fun Building Information Modelling (BIM)	damentals of	2 L
Drawings	1		
1	Buildings with load bearing walls including details of doors and windows.		6P
2	Taking standard drawings of a typical two storeyed building including all MEP.joi finishing and other details and writing out a description of the Facility in about 500-		4P
3	RCC framed structures		6P
4	Reinforcement drawings for typical slabs, beams, columns and spread footings		6P
5	Industrial buildings - North light roof structures – Trusses		4P
6	Perspective view of one and two storev buildings		4P

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1	2	1	1		1							
CO 2	2	1	2	1	1							
CO 3	1	1										
CO 4	2	1	2		1				1			
CO 5	1	1	2		1							

Sub: <u>Soil Mechanics I</u> Code: CE (PC)401 Contact: 2L+1T (Total: 41) Credits: 3

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. Classify soil as per grain-size distribution curve and understand the index properties of soil.
- CO 2. Apply the concept of total stress, effective stress and pore water pressure for solving geotechnical problems.
- CO 3. Assess the permeability of different types of soil and solve flow problems.
- CO 4. Estimate the seepage loss, factor of safety against piping failure using flownet related to any hydraulic structure.
- CO 5. Determine vertical stress on a horizontal plane within a soil mass subjected to different types of loading on the ground surface and also the maximum stressed zone or isobar below a loaded area.
- CO 6. Apply the concept of shear strength to analyse different geotechnical problems and determine shear strength parameters from lab and field tests.

CE(PC)401	Soil Mechanics – I	2L + 1T	3 Credits
Prerequisite	Engineering Mechanics		
Module 1	PHYSICAL PROPERTIES OF SOILS: Soil Formation Introduction, Origin of Soil, Formation and Types of soil classification, Typical Indian Soil, Some Special Types of Soils, S Composition, Clay Mineralogy. Soil as a Three Phase System Basic Definitions, Weight - Volume Relationship, Measurement Properties of Soil: Insitu Density, Moisture Content, Specific Gra density, Functional Relationships. Index Properties of Soil Introduction, Particle Size Distribution, Mechanical Analysis - Si Sedimentation Analysis – Hydrometer and Pipette Methods. Consi – Atterberg Limits, Different Indices, Discussion on Limits and Indi Classification of Soil Classification by Structure, Particle Size Classification, Textural System (AASHTO Classification), Unified Classification System, As Recommendation, Field Identification of Soil, Classification by Plasticity Chart.	10L + 5T	
Module 2	Soil Hydraulics Modes of Occurrence of Water in Soil – Free Water, Held Wate Water, Capillary Water, Gravitational Water, Adsorbed Water, Pore Water Pressure, Effective Pressure, Total Pressure, Effective Pr Different Conditions and in Different Cases of Flow through S Hydraulic Gradient, Quick Sand Condition.	e Water, Pore ressure under	3L + 1T
Module 3:	Permeability Introduction, Darcy's Law, Coefficient of Permeability, Discha Seepage Velocity, Factors Affecting Permeability. Determination of Permeability – Constant Head and Falling Head Methods, Pe Stratified Soil Deposits, Field Determination of Permeability – Un Confined Aquifers.	Coefficient of rmeability of	3L + 1T
Module 4:	Seepage Analysis Introduction, Seepage, Seepage Pressure, Two Dimensional Flo Equations, Continuity equation, Flow Nets, Flow through Ea Estimation of Seepage, Construction, Properties and Use of Flow and Heaving Unlift due to Seepage Design of Fillers	arthen Dam,	3L + 1T

Module 5:	STRESS DISTRIBUTION IN SOILS Introduction, Geostatic Stress, Boussinesq's Equation, Determination of Stress due to Point Load, Vertical Stress Distribution on a Horizontal Plane, Isobar and Pressure Bulb, Vertical Stress Distribution on a Vertical Plane, Vertical Stress under Uniformly Loaded Circular Area, Vertical Stress Beneath a Corner of a Rectangular Area, Equivalent Point Load Method, 2:1 Method, Newmark's Influence Chart, Vertical Stress Beneath Line and Strip Loads. Westergaard Analysis, Comparison of Boussinesq and Westergaard Theories, Contact Pressure	4L + 2T
Module 6	SHEARING STRENGTH OF SOILS Shear Strength of Soil Introduction, Basic Concept of Shear Resistance and Shear Strength of Soil, Mohr Circle of Stress, Sign Conventions, Mohr - Coulomb Theory, Relationship between Principal Stresses and Cohesion. Determination of Shear Parameters of Soil Stress Controlled and Strain Controlled Tests, Laboratory Determination of Soil Shear Parameters- Direct Shear Test, Triaxial Test, Classification of Shear Tests Based on Drainage Conditions, Unconfined Compression Test, Vane Shear Test as per Relevant IS Codes. Stress- Strain Relationship of Clays and Sands, Concept of Critical Void Ratio. Skempton's Pore Pressure Parameters. Sensitivity and Thixotropy of clay. Concent of Stress	5L + 3T

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	↓											
CO 1	3	2										
CO 2	3	2										
CO 3	3	2	1									
CO 4	3	2	1									
CO 5	3	2	2									
CO 6	3	2	1									

Sub: <u>Introduction to solid mechanics</u> Code: CE (ES)402 Contact: 2L+0T (Total: 30) Credits: 2

Pre-requisites: Engineering Mechanics [CE (ES) 301], Basic Calculus

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. To identify the equilibrium conditions and elastic properties of axially loaded bars through stress-strain and force displacement curve.
- CO 2. To identify the principal stress and principal plain through Mohr circle.
- CO 3. TO calculate the hoop and meridiOnal stresses in thin cylinders and spherical shells.
- CO 4. TO identify different degrees of freedoms for support conditions like hinge, roller and fixed constraints.
- CO 5. To calculate bending moment, shear force and deflection of beams for uniformly distributed, concentrated, linearly varying and external concentrated moment.
- CO6. To calculate the member forces in a plane truss using method of joint and method of sections.
- CO7. To identify torsional moment and twist on a circular shaft and calculate the shear stress.
- CO8. To know the concept of strain energy due to axial load, bending and shear.
- CO9: TO know the buckling load of columns using Euler's theory for different support constraints.

CE(ES)402	Introduction to Solid Mechanics	2L + 0T	2 Credits
Prerequisite	Engineering Mechanics (CE(ES)301), Basic Calculus		
Module 1	Review of Basic Concepts of Stress and Strain: Normal stress, S Bearing stress, Normal strain, Shearing strain; Hooke's law; Poisson Stress-strain diagram of ductile and brittle materials; Elastic limit; U stress; Yielding; Modulus of elasticity; Factor of safety, Beam Statics: Support reactions, concepts of redundancy, axial force, and bending moment diagrams for concentrated, uniformly distribut varying load, concentrated moments in simply supported beams, can overhanging beams	's ratio; Jltimate shear force ed, linearly	6L
Module 2	Symmetric Beam Bending: Basic kinematic assumption, momen elastic flexure formulae and its application, Bending and shear stress sections, shear centre		3L
Module 3:	Deflection of statically determinate beams: Fundamental conc curve, moment Curvature relationship, governing differentia boundary conditions: Direct integration solution		4L
Module 4:	Analysis of determinate plane trusses: Concepts of redundancy, method of joints, method of sections	Analysis by	4L
Module 5:	Two Dimensional Stress Problems: Principal stresses, max stresses. Mohr's circle of stresses, construction of Mohr's circle	imum shear	3L
Module 6	Introduction to thin cylindrical & spherical shells: Hoop meridional - stress and volumetric changes	stress and	3L
Module 7	Torsion: Pure torsion, torsion of circular solid shaft and hollow sha equation, torsional rigidity, closed coil helical; springs	fts, torsional	4L
Module 8	Columns: Fundamentals, criteria for stability in equilibrium, colu theory, Euler's load for columns with different end conditions, 1 Euler's theory – problems, eccentric load and secant formulae.		3L

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	•											
CO 1	3	2										
CO 2	3	2										
CO 3	3	2										
CO 4	3	3										
CO 5	3	3										
CO 6	3	3										
CO7	3	3										
CO8	3	2										
CO9	3	2										

Environmental Engineering-I

Code – CE(PC) 402 Contact – 2L + 1T Credits- 3 **Prerequisites**: Chemistry and Engineering Hydrology.

Course Outcomes: At the end of the course, the student will be able to:

CO1- Define the basic concepts and terminologies of water supply engineering and solid waste

CO2- Describe and differentiate the surface and groundwater sources; and composition and characteristics of municipal solid waste.

CO3- Apply the methods of quantifying water requirement and MSW generation.

CO4- Solve different mathematical problem regarding different components of water supply system CO5- Compare between different water samples based on their physical, chemical and biological characteristics.

CO6 design different unit processes and operations involved in water treatment and MSW management.

Syllabus:

Module 1	Water Requirement Estimation Water Demand: Different types of water demand; Per capita demand; Variations in demand; Factors affecting water demand Future Demand Forecasting: Design period; Population forecasting methods
Module 2	Sources of Water Surface Water Sources; Ground Water Sources
Module 3:	Water Quality Water Quality Characteristics: Physical, Chemical, and Biological parameters Drinking Water Standards: BIS; WHO; USEPA Water Quality Indices: Basic concept and examples
Module 4:	Water Treatment Typical flow chart for surface and groundwater treatments Unit Operation and Processes: Aeration, Plain Sedimentation, Sedimentation with Coagulation and Flocculation, Water Softening, Filtration, Disinfection
Module 5:	Water Conveyance and Distribution Hydraulic design of pressure pipes; Analysis of distribution network; Storage and distribution reservoirs; Capacity of reservoirs.
Module 6	Characteristics of Municipal Solid Waste (MSW) Composition and characteristics of MSW
Module 7	Handling of MSW Generation, collection and transportation of MSW
Module 8	Engineered Systems for MSW Management Methods of reuse/ recycle, energy recovery, treatment and disposal of MSW

Program outcomes	-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	♦												
CO 1				2	3								
CO 2		3	3	3				2					
CO 3		2	2				3	2					
CO 4		3	2		3	2		2	1				
CO 5		2		2	3				2				
CO 6				3	2							1	

OmDayal Group of Institutions

Department of Mechanical Engineering

Subject Code: CE(ES)401	Category: Engineering Science Courses
Subject Name: Introduction to Fluid	Semester: IV
Mechanics	
L-T-P: 2-0-0	Credit:2

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Course (
Module	Description of Topic	Contact
No		Hrs.
1	Properties of fluids: Fluid – definition, distinction between solid and	3
	fluid - Units and dimensions - Properties of fluids - density, specific	
	weight, specific volume, specific gravity, viscosity, compressibility,	
	vapour pressure, capillarity and surface tension	
2	Fluid statics: Pressure at a point, basic equation for pressure field,	4
	pressure variation in a fluid at rest- incompressible fluid,	
	compressible fluid, absolute pressure, gauge pressure; pressure	
	measurements by manometers - general, inclined, inverted, micro-	
	manometer; pressure and forces on submerged planes and curved	
	surfaces, centre of pressure, buoyancy and floatation, Stability of	
	submerged and floating bodies, metacentric height.	
3	Fluid Kinematics: The velocity field, Eulerian and Lagrangian flow	6
	descriptions, concepts of: - one-, two- and three-dimensional flows,	
	steady and unsteady flows, streamlines, streaklines, pathlines; The	
	acceleration field; Control volume and system representation,	
	Continuity Equation, Momentum Equation, Moment-ofmomentum	
	equation, applications to pipe bends.	
4	Fluid Dynamics: Application of Newton's Law along a streamline,	7
	Bernoulli Equation, Kinetic energy head, potential energy head and	
	pressure energy head, total energy head, Pitot tube, Examples of use	
	of Bernoulli Equation, measurement of flows - venturimeter, energy	
	line and hydraulic grade line.	
5	Dimensional Analysis: Buckingham Pi Theorem, determination of Pi	3
	terms, correlation of experimental data, examples.	
6	Flow through Pipes: Laminar flow, Reynolds number, critical	7
	velocity, turbulent flow, shear stress at pipe wall, velocity	
	distribution, loss of head for laminar flow, Darcy-Weisbach Formula,	
	friction factor, contraction and expansion head losses. Concept of	
	boundary layer and its growth.	
7	Pipeline Systems: Pipes in series, pipes in parallel, equivalent pipes,	7
	branching pipes, pipe networks.	
8	Hydraulic Machines: Basics of hydraulic machines, specific speed	3

of pumps and turbines.	
------------------------	--

Course Outcomes:

On successful completion of this course, student should be able to:

- 1. Define basic terms, values and laws in the areas of fluids properties, statics, kinematics and dynamics of fluids, and hydraulic design of pipe systems;
- 2. Describe methods of implementing fluid mechanics laws and phenomena while analyzing the operational parameters of hydraulic problems;
- 3. Practically apply tables and diagrams, and equations that define the associated laws;
- 4. Calculate and optimize operational parameters of hydraulic problems;
- 5. Explain the correlation between different operational parameters.

CONCRETE TECHNOLOGY Code: CE(PC)404 Contact: 2L (Total: 40L) +1T Credits: 3

Prerequisites : Introduction to Civil Engineering CE(HS)302, Chemistry BS-CH101.

COURSE OUTCOMES:

At the end of the course, students would be able to -----

CO1. To test all the required properties of concrete materials as per IS code to ensure quality control while testing/ sampling . Identify the materials used to make concrete; including their sources, production and properties

CO2. To compute the properties of concrete at fresh and hardened state. Describe and carry out tests relevant to the use of fresh and hardened concrete

CO3. To design concrete mix with and without admixtures as per latest IS code methods.

CO4. Design the special type of concrete for specific application purposes. Classify the different types of concrete based on their applications

CO5. To identify the various concreting methods to place the concrete on site

CO6- Perform various NDT on concrete structures and to study crack repair and rehabilitation of concrete structures.

Module 1	Cement: Manufacturing of cement, Oxides composition of cement and t he	5L + 3T
	calculation of compounds, Heat of hydration, Types of cement- OPC, RPC. Lowheat cement, PPC, PSC, Sulphate resisting cement, Hig h Alumina cement,Expansive cement, White cement; Test on cement- fin eness, consistency, initial	
	setting time & final setting time, soundness test, strength test, specific gr avity of cement, storage of cement.	
Module 2	Aggregates: Classification, Grading, alkali- aggregate reaction, deleterious substances in aggregates, physical properties, testing of aggregates- fine ness modulus, bulking, specific gravity, sieve analysis, flakiness & elongation index.Quality of Water for mixing and curing - use of sea water for mixing ng concrete.	3L + 1T
Module 3:	Properties of fresh concrete: Workability, factors affecting workability, segregation and bleeding, tests on workability- slump test, compacting fa ctor test, vee-bee test, flow table test.	3L + 1T
Module 4:	Properties of Hardened concrete: Tensile & compressive strength, flexur al strength, stress strain characteristics, modulus of elasticity, poisson's ratio,Creep, shrin kage, permeability of concrete, micro cracking of concrete.	3L + 1T
Module 5:	Strength of concrete: curing methods, water-cement ratio. gel- space ratio,maturity of concrete,	3L + 1T
Module 6	Admixtures: types, uses, superplasticizers, plasticizers, Bonding admixtures.	2L + 1T
Module 7	Mix Design – Objective, factors influencing mix proportion - Mix design by I.S.10262-2019. (with & without admixture)	3L + 1T

Module 8	Non-destructive test: Rebound hammer and Ultra-	3L + 1T
	sonic pulse velocity testing methods.	
	Quality control - Sampling and testing, Acceptance criteria.	
Module 9	Special Concrete – Ferrocement - Fibre reinforced concrete - Polymer c	4L + 1T
	oncrete Special Concrete – Ferrocement - Fibre reinforced concrete -	

Mapping of Course outcomes with Program outcomes

Program outcomes Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1					2	2	1					
CO 2	2	2	1	2	2							
CO 3	2	2	2	1			2					2
CO 4			2			2						2
CO 5	2		2		2				2		2	
CO 6	3	3			3	2	2					

Course Name CIVIL ENGINEERING – SOCIETAL & GLOBAL IMPACT

Course Code CE(HS)401

Course Credit 2

Contact Hour 2L+1T (Total: 30L)

Prerequisite : Introduction to Civil Engineering and Energy science & Engineering. SKILLS:

Aware of the importance of Civil Engineering and impact on the society. Aware of the impact of Civil Engineering for various fields of human endeavour. Innovative thinking to ensure sustainability

Course Objective:

The course is designed to provide a better understanding of the impact which Civil Engineering has on the Society at large and on the global arena. Civil Engineering projects have an impact on the Infrastructure, Energy consumption and generation, Sustainability of the Environment, Aesthetics of the environment, Employment creation, Contribution to the GDP, and on a more perceptible level, the Quality of Life. It is important for the civil engineers to realise the impact which this field has and take appropriate precautions to ensure that the impact is not adverse but beneficial. The objectives of this course is understand need of these sources due to crisis of conventional sources and the familiarize with non- conventional sources

COURSE OUTCOMES (CO) :

At the end of the course, students would be able to -----

CO1. The impact which Civil Engineering projects have on the Society at large and on the global arena and using resources efficiently and effectively Outline the role of Civil engineering in evolution and revolution of mankind and globally present status of development in India.

CO2 Estimate the level of resource utilization for present and future infrastructural projects using various tools/methods.

CO3. The extent of Infrastructure, its requirements for energy and how they are met: past, present

and future. Infer the necessity of different conventional as well as futuristic infrastructural projects.

CO4. The Sustainability of the Environment, including its Aesthetics. Incorporate the goal of sustainable development to minimize the potential impacts on the global environment.

CO5. The Built Environment and factors impacting the Quality of Life. Associate various measures for enhancing the build environment, thereby improving quality of life of the occupants.

CO6. The potentials of Civil Engineering for Employment creation and its Contribution to the GDP. Evaluate the potential of Civil Engineering for employment creation and its contribution to the GDP.

Madula 1	Introduction to Course and Over jour Linderstending the post to leave	21
Module 1	Introduction to Course and Overview; Understanding the past to look into the	3L
	future: Preindustrial revolution days, Agricultural revolution, first and second	
	industrial revolutions, IT revolution; Recent major Civil En gineering	
	breakthroughs and innovations; Present day world and future project ions,	
	Ecosystems in Society and in Nature; the steady erosion in Sustainabi lity;	
	Global warming, its impact and possible causes; Evaluating future req uirements	
	for various resources; GIS and applications for monitoring systems; H uman	
	Development Index and Ecological Footprint of India Vs other countri es and	
	analysis;	
Module 2	Understanding the importance of Civil Engineering in shaping and	3L
	impacting the world; The ancient and modern Marvels and Wonders in the field	
	of Civil Engineering; Future Vision for Civil Engineering	

Module 3:	Infrastructure - Habitats, Megacities, Smart Cities, futuristic visions;	8L
	Transportation (Roads, Railways & Metros, Airports, Seaports, River ways, Sea	
	canals, Tunnels (below ground,under water); Futuristic systems (ex, Hyper	
	Loop)); Energy generation (Hydro, Solar (Photovoltaic, Solar Chimney), Wind,	
	Wave, Tidal, Geothermal, Thermal energy); Water pr ovisioning;	
	Telecommunication needs (towers, above- ground and underground cabling);	
	Awareness of various Codes & Standards governing Infrastructure de velopment;	
	Innovations and methodologies for ensuring Sustainability;	
Module 4:	Environment- Traditional & futuristic methods; Solid waste management,	7L
	Water purification, Wastewater treatment & Recycling, Hazardous w aste	
	treatment; Flood control (Dams, Canals, River interlinking), Multi- purpose	
	water projects, Atmospheric pollution; Global warming phenomena a nd Pollution	
	Mitigation measures, Stationarity and non- stationarity; Environmental Metrics	
	& Monitoring; Other Sustainability measures; Innovations and metho dologies	
Module 5:	Built environment-	5L
	Facilities management, Climate control; Energy efficient built environments and LEED ratings, Recycling, Temperature/ Sound	
	built environments and LEED ratings, Recycling, Temperature/ Sound	

Module 6	Civil Engineering Projects – Environmental Impact Analysis procedure s;	4L
	Waste (materials, manpower, equipment) avoidance/ Efficie ncy increase;	
	Advanced construction techniques for better sustainability; Techniqu es for	
	reduction of Green House Gas emissions in various aspects of Civil En gineering	
	Projects; New Project Management paradigms & Systems (Ex. Lean	
	Construction), contribution of Civil Engineering to GDP, Contribution to	
	employment(projects, facilities management), Quality of products, H ealth &	
	Safety aspects for stakeholders; Innovations and methodologies for e nsuring	
	Sustainability during Project development	

Mapping of Course outcomes with Program outcomes

Program outcomes	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course ↓ outcome												
CO 1					2	1	1				1	
CO 2						1	1				1	
CO 3					2	1	1				1	
CO 4					2	1	1				1	
CO 5						1	1				1	

CO 6			1	1	1		1	

ENGINEERING GEOLOGY LABORATORY

Code: CE (ES) 493 Contact: 2P Credits: 1

Prerequisites: <u>Basic Sciences (Physics, Chemistry, Mathematics)</u>, <u>Physical Geography and Introductions to Civil</u> Engineering CE(HS)302.

Course Outcomes: At the end of the course, the student will be able to:

CO1	Define and state the role of engineering geology in civil engineering
CO2	Understand origin of rocks and geologic structures
CO3	Apply different tools to identify rocks and minerals in hand specimen and under microscope
CO4	Analyse the geological structures through drawing the cross sections from the geological maps
CO5	Evaluate the results obtained from different geological experiments
CO6	Investigate the natural hazards/disasters that are caused by the geological reasons

CE(ES)493	Engineering Geology Laboratory	2P	1 Credits
Course Outcome	 Upon completion of the course, the students will be able to: 1. Define and state the role of engineering geology in ci 2. Understand origin of rocks and geologic structures 3. Apply different tools to identify rocks and minerals i microscope 4. Analyze the geological structures through drawing th maps 5. Evaluate the results obtained from different geologic 6. Investigate the natural hazards/disasters that are cause 	e cross se	ections from the geological
Prerequisite	Knowledge of basic physics and chemistry		
Experiment 1	Identification of minerals in hand specimen		
Experiment 2	Identification of igneous rocks in hand specimen		
Experiment 3	Identification of sedimentary rocks in hand specimen		
Experiment 4	Identification of metamorphic rocks in hand specimen		
Experiment 5	Study of crystals with the help of crystal models		
Experiment 6	Study of geologic structures with the help of models		
Experiment 7	Interpretation of geological maps: horizontal, vertical, uniclin	nal, folded	and faulted structures
Experiment 8	Microscopic study of rocks and minerals		

Program outcomes→	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome												
CO1	2	1				2	2	1	2			2
CO2	3	3	2	2	3	2	3	2	3	1		3
CO3	3	3	3	1	3	2	3	2	3	2		3
CO4	1	2	2	2	2	1	2	2	3	2		3
CO5	3	3	3	3	2			2	2			2
CO6	3	2		1		3	3	1		1		3

Mapping of course outcomes with program outcomes:

SURVEYING & GEOMATICS LABORATORY

Code: CE(PC) 493

Contact: 2P

Credits: 1

Prerequisites: Basic Sciences (Physics, Mathematics), Surveying & Geomatics [CE(PC)403].

Course Outcomes: At the end of the course, the student will be able to:

CO1: State the interdependency and advancement of different surveying methods

CO2: Comprehend the working principles of different surveying and geomatics instruments and experiments

CO3: Execute the different methods of surveying and geomatics to measure the features of interest

CO4: Examine the results obtained from the surveying and geomatics experiments

CO5: Critically appraise the different techniques of surveying and geomatics in measuring and assessing the features of interest

CO6: Design and construct solutions for real world problems related to surveying and geomatics.

CE(PC)493	Surveying & Geomatics Laboratory	2P	1 Credits
Course Outcome	Upon completion of the course, the students will be able	to:	
	 State the interdependency and advancement of different surveyin Comprehend the working principles of different surveying and generation Execute the different methods of surveying and geomatics to mead Examine the results obtained from the surveying and geomatics e Critically appraise the different techniques of surveying and georassessing the features of interest Design and construct solutions for real world problems related to 	eomatics in asure the fe experiments natics in m	eatures of interest s leasuring and
Prerequisite	Surveying & Geomatics [CE(PC)403]		
Experiment 1	Traverse survey by Prismatic Compass: Procedure; Computation and checks on Preparation of field book; Plotting the traverse; Sources of errors.	closed trav	erse;
Experiment 2	Theodolite Survey: Closed traverse by transit theodolite, Preparation of field bo	ok	
Experiment 3	Differential Levelling using Dumpy level: Collimation and Rise and Fall repreparation	nethods, Fie	eld book
Experiment 4	Total Station Survey: Traversing and Levelling		
Experiment 5	Visual Image Interpretation		
Experiment 6	Satellite Image Pre-processing		
Experiment 7	Digital Image Classification and Accuracy Assessment		
Experiment 8	Stereoscopic fusion of aerial photographs using mirror stereoscope		

Mapping of Course outcomes with Program outcomes

Program outcomes	+	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	¥												
CO 1		2				2	2		2	3	1		3
CO 2		3	3	3	3	3	1		2	3	3		3
CO 3		2	3	3	2	3	2		2	3	3		3
CO 4		2	3	3	3				2				1
CO 5		3	1			3					3		3
CO 6		3	3	3	2	3	3	1	2	3	3		3

Sub: <u>Concrete Technology Laboratory</u> Code: CE (PC) 494 Contact: 2P Credits: 1

Pre-requisites: Concrete technology [CE (PC) 404]

Course Outcomes (COs)

After going through this Course, the students will be able to:

CO 1. Demonstrate the method and findings of tension and compression tests on concrete.

CO 2. Understand the concept of different tests on hardened concrete.

CO 3. Find out mix proportion of high grade of concrete.

CO 4. Measure the workability of concrete mix.

CO 5. Understand the different properties of cement.

CE(PC)494	(PC)494 Concrete Technology Laboratory								
Prerequisite	Concrete Technology CE(PC)404								
Test on Fine aggregates	Bulking, Specific gravity, Bulk Density, Percentage voids, Finenes	ss Modulus. G	rading curve.						
Test on Coarse aggregates Specific gravity, Bulk Density, Percentage voids, Fineness Modulus. Grading curve.									
Test on Cement	Normal consistency, fineness, Initial setting and final setting gravity, soundness and Compressive strength of Cement.	time of cem	ent. Specific						
Test on Fresh Concrete	Concrete mix design, Various workability tests – slump, compactir	ng factor, vee-l	pee test.						
Test on Concrete Hardened Spilt-tensile strength test, Flexure test, NDT Tests (Rebound hammer and Ultra-sonic purvelocity), Poission ratio.									

Mapping of Course outcomes with Program outcomes

Program	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes Course outcome	+											
CO 1	3			1	1							
CO 2	3	2		1	1							
CO 3	3	2		1	1							
CO 4	3	2		1	1							
CO 5	3	2		1	1							

DESIGN OF RC STRUCTURES

Code: CE(PC) 502 Contact: 2L + 1T Credits: 3 **Prerequisites**: Introduction to Solid Mechanics, Concrete Technology and Mechanics of Materials.

Course Outcomes: At the end of the course, the student will be able to:

CO1 Understand material properties and design methodologies for reinforced concrete structures

CO2 Assess different type of loads and prepare layout for reinforced concrete structures.

CO3 Identify and apply the applicable industrial design codes relevant to the design of reinforced concrete members

CO4 Analyse and design of various structural elements of reinforced concrete building like beam, slab, column, footing and staircase.

CO5 Assessment of serviceability criteria for reinforced concrete beam and slab

CO6 Prepare structural drawing and detailing and produce design calculations and drawing in appropriate professional format

Syllabus:

Module 1:	Introduction: Principles of design of reinforced concrete members - Working stress and Limit State method of design
Module 2:	Working stress method of design: Basic concepts and IS code provisions (IS: 456 2000)for design against bending moment and shear forces - Balanced, under reinforced and overreinforced beam/ slab sections; design of singly and doubly reinforced sections
Module 3:	Limit state method of design: Basic concepts and IS code provisions (IS: 456 2000) for design against bending moment and shear forces; concepts of bond stress and development length; Use of 'design aids for reinforced concrete' (SP:16).
Module 4:	Beam Design by LSM: Analysis, design and detailing of singly reinforced rectangular. T. U and doubly reinforced beam sections by limit state method.
Module 5:	Slab Design by LSM : Design and detailing of one-way and two-way slab panels as per IS code provisions
Module 6:	Continuous slab and beam design by LSM: Design and detailing of continuous beams and slabs as per IS code provisions
Module 7:	Design of Staircases by LSM: Types; Design and detailing of reinforced concrete doglegged staircase
Module 8	Design of Columns by LSM: Design and detailing of reinforced concrete short columns of rectangular and circular crosssections under axial load. Design of short columns subjected to axial load with moments (uniaxial and biaxial bending) – using SP 16.
Module 9	Design of Foundation by LSM: Design and detailing of reinforced concrete isolated square and rectangular isolated and combined footing for columns as per IS code provisions by limit state method Design and detailing of Pile foundation as per IS code provisions.

Mapping of Course outcomes with Program outcomes

Program outcomes	_ <u>R</u> 01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
Course outcome	↓											
CO 1	3	1	2	3				1				
CO 2	3	1	2	3				1				
CO 3	3	1	3	3				1				
CO 4	3	1	3	3				1				
CO 5	3	1	3	3				1				
CO 6	3	1	3	3				1				

ENGINEERING HYDROLOGY Code: CE(PC)502 Contact: 3L + (Total: 40L) Credits: 3

Prerequisites : Introduction to Civil Engineering CE(HS)302, CE(ES)401_Fluid Mechanics, Chemistry BS-CH101,Physics BS-PH101

COURSE OUTCOME:

At the end of the course, students would be able to -----

CO1: To study the source, occurrence, movement and distribution of water which is a prime resource for development of a nation. Demonstrated understanding of physical processes in the context of flood hydrology, including the hydrological cycle in general, and rainfall, loss and groundwater transport mechanisms in particular.

CO2: To learn about the functioning of reservoirs and estimation of storage capacities. Demonstrated understanding of the methods that can be used to measure rainfall and flow, as well as their relative advantages and disadvantages.

CO3: Demonstrated ability to obtain design rainfall intensities and hyetographs.

CO4: Demonstrated ability to select appropriate methods of determining design flows and

hydrographs in urban and rural areas.

CO5: To learn about flood hazards, estimation of design floods for various structures and methods of estimating effects of passage of floods through rivers and reservoirs. Demonstrated ability to solve engineering design problems in the context of flood hydrology and hydrogeology.

CO6- To know the basic principles of measurement of flow in rivers Derive hydrographs and predict yield of catchment.

Module 1	Hydrology: Hydrologic Cycle, Global Water Budget, India's Water Budget.	1L
Module 2	Catchment: Definition & Descriptions, Various Types of Catchment, Factors	2L
Module 3:	Measurement of Precipitation: Precipitation, Description and Functioning of	2L
Module 4:	Various Types of Rain gauges Rain gauge Network- Codal Provisions Ontimu Processing of Rainfall Data: Normal Rainfall, Estimation of Missing Rainfall	4L
	Data, Test for Consistency of Record; Mass Curve of Rainfall, Hyetograph, Poin	
Module 5:	Losses from Precipitation: Evaporation – Evaporation Process, Factors affecting	6L
	Evaporation, Measurement of Evaporation– Description and Functioning of Pan	
	Evaporimeter, Pan Coefficient, Evapotranspiration: AET, PET, Measurement of	
Module 6	Streamflow Measurement: Importance, Direct and Indirect Metho ds,	12L
	Measurement of Stage- Various Gauges and Recorders, Measurement of	
	Velocity-	
	Current Meters, their Functioning and Calibration; Velocity	
Module 7	Runoff: Description of the Process, Components of Runoff, Factors Affecting	2L
M. 1.1.0	Runoff Characteristics of Streams Rainfall Runoff Relationshins	41
Module 8	Unit Hydrograph– Definition, Assumptions, Applications– Derivation of Unit	4L
Module 9	Hydrograph Distribution Graph Unit Hydrograph of Different Durations_ Floods: Concept of flood as a natural hazard; Estimation of flood discharge in a	2L
moune >		21
Module 10	river – rational method, empirical formulae, unit hydrograph method: flood Flood Routing: Concept of flood routing in channels and through a reservoir,	5L
	basic routing equations; reservoir routing – Modified Pul's method; channel	

		N	apping o	of Course	outcome	s with Pro	ogram ou	tcomes				
Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1					2	1	1				1	
CO 2						1	1				1	
CO 3					2	1	1				1	
CO 4					2	1	1				1	
CO 5						1	1				1	
CO 6					1	1	1				1	

STRUCTURAL ANALYSIS 1

Code: CE(PC) 503

Contact: 2L + 1 T(Total: 36Hrs)

Credits: 3

Prerequisites: Introduction to Solid Mechanics, Mechanics of Materials, Engineering Mechanics, Strength of Materials

Course Outcomes: At the end of the course, the student will be able to:

CO1 Distinguish between stable and unstable and statically determinate and indeterminate

CO2 Apply equations of equilibrium to structures and compute the reactions

CO3 Calculate the internal forces in cable and arch type structures

CO4 Evaluate and draw the influence lines for reactions, shears and bending moments in beams due to moving load

CO5: use of approximate method for analysis of statically indeterminate structure.

CO6: Calculate the deflections of truss structures and beams.

Syllabus:

Module 1	Basics of Structural Analysis: Concept of static and kinematic indeterminacy, Determination of degree of indeterminacy for different types of structures. Theorem of minimum potential energy, law of conservation energy, principle of virtual work, the first and second theorems of Castigilano, Betti's law, Clark Maxwell's theorem of reciprocal deflection
Module 2	Analysis of Determinate Structures: Portal Frames, Three hinged arches, Cables
Module 3	Deflection of Determinate Structures: Energy methods. Unit Load method for beams, Deflection of trusses and Simple Portal Frames.
Module 4	Influence Line Diagram: Statically determinate beams and trusses under series of concentrated and uniformly distributed rolling loads, criteria for maximum and absolute maximum moments and shear.
Module 5	Analysis of Statically Indeterminate Beams: Theorem of three moments, Energy methods, Force method (Method of consistent deformation) [For analysis of propped cantilever, fixed beams and continuous beams (maximum two degree of indeterminacy) for simple loading case], Analysis of two hinged arch.
Module 6	Influence Line Diagram for Indeterminate Structures: Muller – Breslau principle.

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome												
CO 1	3			3				1				
CO 2	3			3				1				
CO 3	3			3				1				
CO 4	3			3				1				
CO 5	3		2	3								
CO 6	3		2	3								
CO 7	3		2	3								

Sub: <u>Soil Mechanics II</u> Code: CE(PC)504 Contact: 2L+1T (Total: 41) Credits: 3

Pre-requisites: Soil Mechanics I [CE(PC)401]

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. Assess the compaction and consolidation characteristics of soil for solving geotechnical problems.
- CO 2. Calculate earth pressure on rigid retaining walls (cantilever type) from geotechnical engineering consideration.
- CO 3. Evaluate the bearing capacity of shallow foundation by applying established theory.
- CO 4. Estimate settlement in soils by different methods.
- CO 5. Compute safety of dams and embankments on the basis of various methods of slope stability analysis.

CE(PC)504	Soil Mechanics – II	2L + 1T	3 Credits						
Course Outcome	 After going through this course, the students will be able to: Assess the compaction and consolidation characteristics of soil for solving geotechnical problems. Calculate earth pressure on rigid retaining walls on the basis of classical earth pressure theories. Analyze and design rigid retaining walls (cantilever types) from geotechnical engineering consideration. Evaluate the bearing capacity of shallow foundation by applying established theory. Estimate settlement in soils by different methods. Compute safety of dams and embankments on the basis of various methods of slope stability analysis. 								
Prereauisite Module 1	Soil Mechanics – I (CE(PC)401) Consolidation of Soil Terzaghi's theory of one dimensional consolidation, Com characteristics of soils, Compression index, Coefficient of compress volume change, Coefficient of consolidation, Degree and rate of cc Time factor, Settlement computation, Consolidometer and labo dimensional consolidation test as per latest IS Code, Deter- consolidation parameters.	onsolidation, pratory one	5L+3T						

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	↓											
CO 1	3	3	2	2								
CO 2	3	3	2	2								
CO 3	3	3	2	1								
CO 4	3	2	1									
CO 5	3	3	1	2								

Environmental Engineering-I

Code – CE(PC) 505 Contact – 2L + 1T Credits- 3 **Prerequisites**: Chemistry and Engineering Hydrology.

Course Outcomes: At the end of the course, the student will be able to:

CO1- Define the basic concepts and terminologies of waste water engineering and hazardous waste management.

CO2- Describe different house plumbing systems for water supply and waste water disposal.

CO3- Apply the methods of quantifying sanitary sewage and storm sewage.

CO4- Solve different mathematical problems regarding different components of sewerage system

CO5- Compare between different waste water samples based on their physical, chemical and biological characteristics.

CO6 Design different unit processes and operations involved in wastewater treatment.

Syllabus:

Module 1	Sewage and Drainage Definition of Common Terms: Sewage or Sanitary Sewage, Drainage or Storm Sewage, Sullage, Black Water, Grey Water Sewerage Systems: Separate system, Combined System, Partially Separate System: applicability, advantages and disadvantages
Module 2	Sewage and Drainage Quantity Quantity estimation for sanitary sewage: Quantity estimation for storm sewage
Module 3	Conveyance of Sewage Sewers: Shapes; Design parameters; Operation and maintenance of sewers; Sewer appurtenances Hydraulic Design of Sewers: Partial flow diagrams and Nomograms
Module 4	Wastewater Characteristics Physical, chemical and biological characteristics of municipal and domestic sewage; Effluent discharge standards
Module 5	Wastewater Treatment Primary, secondary and tertiary treatment of wastewater; aerobic an anaerobic treatment options Primary and Secondary Treatment of Domestic Wastewater: Typical Flow Chart of STP; Screen and Bar Racks; Grit Chamber; Primary and Secondary Sedimentation Tank; Activated Sludge Process; Trickling Filter
Module 6	Sludge Handling and Disposal Sludge Thickening; Sludge Digestion; Sludge Drying Bed
Module 7	Building Plumbing Introduction to various types of home plumbing systems for water supply and waste water disposal; high rise building plumbing; Pressure reducing valves; Break pressure tanks; Storage tanks; Building drainage for high rise buildings; various kinds of fixtures and fittings used
Module 8	Hazardous waste Types and nature of hazardous waste as per the HW Schedules of regulating authorities

Mapping of Course outcomes with Program outcomes

Program outcomes	+	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	←												
CO 1		3		2	3			2					
CO 2		3	3	3				2					
CO 3		2	2				3	2					
CO 4		3	2		3	2		2	1				
CO 5		2		2	3				2				
CO 6		3		3	2							1	

Sub: Transportation Engineering

Code: CE(PC)506

Contact: 2L+1T (Total: 36L)

Credits: 3

Pre-requisites:

Class-XII level knowledge of Physics, Mathematics; Undergraduate level knowledge of Engineering Mechanics, Strength of Materials, Soil Mechanics

The objective of this course is appreciate of the need for lifelong learning through the discussion of recent changes and studies of highway and transportation engineering, also have the ability to apply knowledge of mathematics, science, and engineering to understand the design techniques and equipment used in highway engineering.

Course Outcomes (COs):

At the end of the course, the student will be able to:

CO 1. Understand the knowledge of planning, design and the fundamental properties of highway materials in highway engineering.

CO 2. Apply the knowledge of geometric design and draw appropriate conclusion

CO 3. Interpret the concept of different methods in design, construction of the pavement.

CO 4. Interpret traffic parameters by applying the knowledge in traffic planning and intersection design.
Module 1	Introduction to Highway Engineering Scope of Highway Engineering; Jayakar Committee Report: Recommendations – CRF, IRC, CRRI; Scope of Motor Vehicle Act; Recommendations of Nagpur Road conference; Road Classification as per third 20 years road development plan (1981-2001); Basic types of Road Patterns and its scope of application	2L+1T
Module 2	Highway alignment Factors controlling Highway Alignment; Engineering Surveys for Highway Alignment.	1L+1T
Module 3	Geometric Design Cross-sectional elements of highway; Design Parameters (as per IRC) – Vehicle dimensions, Carriageway width, Design speed, Frictional coefficients (Lateral and Longitudinal) etc; Design Principles of Horizontal Alignment: Camber, Sight Distance (PIEV theory, SSD, OSD, ISD); Horizontal Curves – [Radius, Super elevation, Extra widening, Set back distance, Transition curve]; Design Principles of Vertical Alignment: Gradients; Grade Compensation; Vertical Curves – Summit Curve, Valley curve.	8L+4T
Module 4	Traffic Engineering Traffic studies: Fundamental parameters of Traffic Flow (speed, flow, density, capacity) and their basic relations; Basics of Spot Speed Studies- Speed and Delay study- O & D study; Intersections and Channelization: At Grade and Grade Separated intersections; Conflict points; Salient features of Rotary; Traffic Signs; Signal Design – Basic concepts of IRC design method, 2 phase signal design by Webster method.	7L+3T
Module 5	Pavement Design Pavement materials: Bitumen, Aggregate, Subgrade soil; Types of Pavement: Flexible and Rigid pavements and their typical cross-sections; Design parameters: Wheel Load, ESWL, Tyre Pressure, CBR, Resilient Modulus & Poisson's Ratio of various layers, Subgrade Modulus etc. Design of Flexible Pavement using IRC 37:2018 Design of Rigid Pavement: Wheel Stresses, Frictional Stresses and Warping Stresses; Expansion, Contraction and Construction Joints; Design of Rigid Pavement thickness, Dowel Bar and Tie Bar; Distresses in Pavements	8L+5T
Module 6	Sustainability Scope of adoption of sustainable construction techniques by using recyclable hazardous materials- fly ash, plastics, recyclable construction materials.	1L+1T

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2

Course outcome										
CO 1	3	3	2			2			3	
CO 2	3	3	2		2					
CO 3	3	3	3		1	1				
CO 4	3	3	2	2	2					

ENVIRONMENTAL ENGINEERING LAB

CODE: CE(PC)-595

CRDIT-2

Prerequisites: Knowledge of Environmental Engineering, biology for engineers, chemistry and physics Laboratory.

COURSE OUTCOMES: -

At the end of the course, the student will be able to:

CO1: Experiment various physical characteristics for a given sample of water and waste water CO2: Determine various chemical characteristics for a given sample of water and waste water CO3: Examine the bacteriological characteristics for a given sample of water and waste water CO4: Examine the suitability of a few treatment options for a given sample of water and waste water CO5: Compare the determined quality parameters with standards to decide on the suitability of the use for the treated water and disposal of tested waste water.

Syllabus:

Determination of turbidity for a given sample of water
Determination of electrical conductivity for a given sample of water
Determination of Total Solids, Suspended Solids, Dissolved Solids and Volatile Solids in a given sample of water
Determination of pH for a given sample of water
Determination of carbonate, bi-carbonate and hydroxide alkalinity for a given sample of water
Determination of acidity for a given sample of water
Determination of hardness for a given sample of water
Determination of concentration of Iron in a given sample of water
Determination of concentration of Chlorides in a given sample of water
Determination of the Optimum Alum Dose for a given sample of water through Jar Test
Determination of the Chlorine Demand and Break-Point Chlorination for a given sample of water
Determination of amount of Dissolved Oxygen (DO) in a given sample of water
Determination of the Biochemical Oxygen Demand (BOD) for a given sample of wastewater
Determination of the Chemical Oxygen Demand (COD) for a given sample of wastewater
Determination of Colliform Bacteria: presumptive test, Confirmative test and Determination of MPN

Mapping of Course outcomes with Program outcomes

Program 🗕	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes												
Course	¥											
outcome												
CO 1						3	3					
CO 2	1	3	2		1	3	3					
CO 3		3	2			3	3				1	
CO 4		3	2			2	3				1	
CO 5		3	2		1	3	3				1	

Sub: <u>Soil Mechanics Laboratory</u> Code: CE (PC) 594 Contact: 2P Credits: 1

Pre-requisites: Soil Mechanics I [CE (PC) 401], Soil Mechanics II [CE (PC) 504]

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. Identify different types of soil by visual inspection.
- CO 2. Determine natural moisture content and specific gravity of various types of soil.
- CO 3. Estimate in-situ density by core-cutter method and sand replacement method.
- CO 4. Analyse grain-size distribution and Atterberg limits for soil.
- CO 5. Perform laboratory test to determine permeability and compaction characteristics of soil.
- CO6. Determine shear strength parameter of soil by unconfined compression test and vane shear test.
- CO7. Determine shear strength parameter by direct shear test.
- CO8. Perform triaxial test to determine the shear strength parameter of soil.
- CO9. Determine California Bearing Ratio of soil.
- CO10. Prepare technical laboratory report.

CE(PC)594	Soil Mechanics Laboratory	2P	1 Credits								
Course Outcome	 Estimate in-situ density by core cutter method and sand replacen Analyze grain size distribution and Atterberg limits for soil. Perform laboratory tests to determine permeability and compacti Determine shear strength parameters of soil by unconfined co test. Determine shear strength parameters of soil by direct shear test. 	 Identify different types of soil by visual inspection. Determine natural moisture content and specific gravity of various types of soil. Estimate in-situ density by core cutter method and sand replacement method. Analyze grain size distribution and Atterberg limits for soil. Perform laboratory tests to determine permeability and compaction characteristics of soil. Determine shear strength parameters of soil by unconfined compression test and vane shear test. Determine shear strength parameters of soil by direct shear test. Perform triaxial test to determine shear strength parameters of soil. Determine California Bearing Ratio (CBR) of soil. 									
Prerequisite	Soil Mechanics - I (CE(PC)401) and Soil Mechanics - II (CE(PC)504)										
Experiment 1	Field identification of different types of soil as per Indian Standards [identifications without laboratory testing].	collection of field s	samples and								
Experiment 2	Determination of natural moisture content.										
Experiment 3	Determination of specific gravity of cohesionless and cohesive soils.										
Experiment 4	Determination of in-situ density by core cutter method and sand repla	acement method.									
Experiment 5	Determination of grain size distribution by sieve and hydrometer and	llysis.									
Experiment 6	Determination of Atterberg limits (liquid limit, plastic limit and shrin	Determination of Atterberg limits (liquid limit, plastic limit and shrinkage limit).									
Experiment 7	Determination of co-efficient of permeability by constant and variable	Determination of co-efficient of permeability by constant and variable head permeability tests.									
Experiment 8	Determination of compaction characteristics of soil by standard proct	or compaction tes	t.								

Mapping of Course outcomes with Program outcomes

Program outcomes Course outcome	P <u>O1</u> ↓	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3											
CO 2	3			2	3							
CO 3	3	1		2	3							
CO 4	3	2		2	3							
CO 5	3	2		2	3							
CO 6	3	3		2	3							
CO7	3	2		1	3							
CO8	3	2		1	3							
CO9	3	2		2	3							
CO10	3			3								

Computer Applications in Civil Engineering Code: CE(PC)597 Contact: 2P Credits: 1

Prerequisites: ES-CS291 Programming for Problem Solving, CE(ES)392 Computer-aided Civil Engineering Drawing

Course Outcomes: At the end of the course, the student will be able to:

CO1. Use the computer as a problem-solving tool

CO2. Identify and formulate Civil Engineering problems solvable by computers.

CO3. Solve sets of linear equations and determine roots and nonlinear equations and able perform their application in civil engineering and Construct, interpret and solve simple optimization problems

CO4. Use various software used in industries for analysis and design.

CO5. Develop programs for Civil Engineering analysis and design problems.

CE(PC)597	Computer Applications in Civil Engineering	2P	1 Credits
Module 1	Introduction: Concept of problem-solving using computer, use of progra software for problem solving; Identification of various design and analysis fields of Civil Engineering to be solved using computers; Procedure, formula the analysis and design of such problems.	problems	in different
Module 2	Use of spreadsheets: Learning spreadsheets like MS Excel, matrix analysis Solver, Optimization Tools; Plotting. Applications to problems involvin estimation, surveying, and design problems.	·	
Module 3	Programming Languages: Learning at least one language: Fort C++11/C++14, Python 3, VBA 7.0; Computing platforms like Matlab/Scil analysis and design problems in areas like surveying, hydraulics, structural soil mechanics and foundation, transportation, water resources, etc.	ab/MathC	AD; Solving
Module 4	Use of Software: Familiarity with widely used Civil Engineering software l RAS. HEC-HMS. SWMM. Mx Roads. etc.: Solving at least two such analysis/d		,

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome↓												
CO 1	3	3	3	1	3							1
CO 2	3	3	3	1	3							1
CO 3	3	3	3	1	3							1
CO 4	3	3	3	1	3							1
CO 5	3	3	3	1	3							1

Engineering Economics, Estimation & Costing Code: CE ((PC) 602

Prerequisites: CE(ES)392 Computer-aided Civil Engineering Drawing

Course Outcomes: At the end of the course, the student will be able to:

CO1 – Have an idea of Economics in general, Economics of India particularly for public sector agencies and private sector businesses and Understand the measures of National Income

CO2- Perform and evaluate present worth, future worth and annual worth analyses on one of more economic alternatives and Be able to carry out and evaluate benefit/cost, life cycle and breakeven analyses

CO3- Understand the technical specifications for various works to be performed for a project and how they impact the cost of a structure

CO4- Quantify the worth of a structure by evaluating quantities of constituents, derive their cost rates and build up the overall cost of the structure.

CO5- Understand how competitive bidding works and how to submit a competitive bid proposal

Mapping of Course outcomes with Program outcomes

CE(PC)602	Engineering Economics, Estimation & Costing	2L + 0T
Module 1	Basic Principles and Methodology of Economics. Demand/Supply – elasticity – Government Policies and Application. Theory of the Firm and Market Structure. Basic Macroeconomic Concepts (including GDP/GNP/NI/Disposable Income) and Identities for both closed and open economies Aggregate demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates, Direct and Indirect Taxes	3L
Module 2	Elements of Business/Managerial Economics and forms of organizations. Cost & Cost Control –Techniques, Types of Costs, Lifecycle costs, Budgets, Break even Analysis, Capital Budgeting, Application of Linear Programming. Investment Analysis – NPV, ROI, IRR, Payback Period, Depreciation, Time value of money (present and future worth of cash flows). Business Forecasting – Elementary techniques. Statements – Cash flow, Financial. Case Study Method.	3L
Module 3:	Estimation / Measurements for various items Introduction to the process of Estimation; Use of relevant Indian Standard Specifications for the same, taking out quantities from the given requirements of the work, comparison of different alternatives, Bar bending schedules, Mass haul Diagrams, Estimating Earthwork and Foundations, Estimating Concrete and Masonry, Finishes, Interiors, MEP works; BIM and quantity take-offs; adding equipment costs; labour costs; rate analysis; Material survey-Thumb rules for computation of materials requirement for different materials for buildings, percentage breakup of the cost, cost sensitive index, market survey of basic materials. Use of Computers in quantity surveying	9L
Module 4:	Specifications Types, requirements and importance, detailed specifications for buildings, roads, minor bridges and industrial structures.	3L
Module 5:	Rate analysis Purpose, importance and necessity of the same, factors affecting, task work, daily output from different equipment/productivity.	3L
Module 6	Tender- Preparation of tender documents, importance of inviting tenders, contract types, relative merits, prequalification. general and special conditions, termination of contracts, extra work and Changes, penalty and liquidated charges, Settlement of disputes, R.A. Bill & Final Bill, Payment of advance, insurance, claims, price variation, etc. Preparing Bids- Bid Price buildup: Material, Labour, Equipment costs, Risks, Direct & Indirect Overheads, Profits; Bid conditions, alternative specifications; Alternative Bids. Bid process management	3L

Module 7	Valuation Values and cost, gross income, outgoing, net income, scrap value, salvage value, market value, Book Value, sinking fund, capitalised value, Y. P., depreciation, obsolescence, deferred income, freehold and leasehold property, mortgage, rent fixation, valuation table	3L
Module 8	Introduction to Acts pertaining to-Minimum wages, Workman's compensation, Contracts, Arbitration, Easement rights.	2L

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome												
CO 1	3										3	1
CO 2	3										3	1
CO 3	3		1								2	1
CO 4	3		1								2	1
CO 5	3										3	1

Sub: <u>Foundation Engineering</u> Code: CE (PE) 601B Contact: 2L+0T (Total 30) Credits: 2

<u>Pre-requisites:</u> Introduction to Civil Engineering[CE(HS)302], Soil Mechanics I[CE(PC)401], Soil Mechanics II[CE(PC)504]

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. Determine the load carrying capacity of pile foundation.
- CO 2. Compute the efficiency and settlement of pile group.
- CO 3. Understand different subsoil exploration methods and interpret field and laboratory test data to obtain design parameters for geotechnical analysis.
- CO 4. Correlate bearing capacity of shallow foundation from field test data.
- CO 5. Analyse and design sheet pile structure on the basis of earth pressure theories.
- CO6. Understand and apply various types of ground improvement methods for solving complex geotechnical problems.

Prerequisite	Introduction to Civil Engineering (CE(HS)302), Soil Mechanics – I (CE(PC)401), Soil II (CE(PC)504).	Mechanics –
Module 1	Introduction Classification, selection- shallow and deep foundations.	2L
Module 2	Deep foundations Pile foundation: Types of piles, material, Suitability and uses, Method of installation of piles - classification of piles based on material, Installation Techniques – Selection and uses, Determination of types and lengths of piles, Load transfer mechanism, Determination of load carrying capacities of piles by static and dynamic formulae as per IS codes, Pile spacing and group action, Group efficiency, Negative skin friction, Pile load test, Settlement of pile group, Lateral load capacity of pile by IS: 2911 and Reese & Matlock methods, Uplift capacity of pile - introduction.	9L
Module 3:	Site Investigation & Soil Exploration Planning of sub-surface exploration, Methods of boring, sampling, Different types of samples, Spacing, Depth and number of exploratory borings, Bore log, Preparation of sub-soil investigation report. In-situ tests Standard penetration test, Static cone penetration test, Dynamic cone penetration test, Field vane shear test, Plate load test. Indirect methods of soil exploration Geophysical method: seismic refraction and electrical resistivity methods.	6L
Module 4:	Shallow Foundations Bearing Capacity from SPT, SCPT and Plate load Test data.	3L
Module 5:	Sheet pile structures Type of sheet pilling, Design of sheet pile, Cantilever sheet piling, Anchored sheet piling, Free earth and fixed earth support methods, Analysis with anchored bulk heads.	4L
Module 6	Introduction to Ground Improvement Techniques Introduction, Economic considerations, Consolidation by preloading and sand drains, Stone columns, Compaction by vibro-floatation, Grouting techniques and principles Applications of geo-synthetics. Ground anchors and soil nailing	6L

Mapping of Course outcomes with Program outcomes

Program	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes Course outcome	•											
CO 1	3	3	2									
CO 2	3	3	2									
CO 3	3	3	2	2	2							
CO 4	3	1										
CO 5	3	3	3									
CO 6	3	2			1		2					

STRUCTURAL ANALYSIS II

Code: CE(PE) 602B Contact: 2L + 0 T(Total: 30Hrs) Credits: 3 **Prerequisites**: Introduction to Solid Mechanics, Structural Analysis – I,

Course Outcomes: At the end of the course, the student will be able to:

CO1 Apply the Slope Deflection and Moment Distribution Method to analyze indeterminate structure

CO2 Develop and analyze the concept of suspension bridge and stiffen girders

CO3 Apply and analyze the concepts of curved beam, analysis in hooks, rings and Bow girders

CO4 Develop the concept bending in unsymmetrical beams

CO5: Develop the fundamental concept of plastic analysis using kinematic method and apply them in frame and continuous beam analysis

CO6: Develop and analyze the portal frame using portal and cantilever method, Develop and analyze the indeterminate structures (continuous beam and frame) using flexibility and stiffness matrix method.

Syllabus:

Module 1	Analysis of statically Indeterminate Structures: Moment distribution method-solution of continuous beam, effect of settlement and rotation of support, frames with or without side sway. Slope deflection method: method and application in continuous beams and frames. Suspension Bridge and stiffening girders.
Module 2	Curved Beam analysis: Hooks, rings and Bow girders. Unsymmetrical bending.
Module 3	Plastic analysis of structures: beams and portal frames.
Module 4	Approximate method of analysis of structures: Portal and Cantilever methods.
Module 5	Matrix methods of structural analysis – Stiffness and flexibility approaches for analysis of beam.

Mapping of Course outcomes with Program outcomes

Program outcomes Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3			3				1				
CO 2	3			3				1				
CO 3	3			3				1				
CO 4	3			3				1				
CO 5	3		2	3								
CO 6	3		2	3								

CONSTRUCTION ENGINEERING AND MANAGEMENT

Code: CE(PC)601 Contact: 2 L (Total: 30L) Credits: 2

Prerequisites : Introduction to Civil Engineering, Building Construction & Concrete Technology

Course outcome:

CO1- An idea of how structures are built and projects are developed on the field. The understanding & to determine the quantity of buildings require the knowledge of drawings. This knowledge will be useful to the student to prepare the construction schedule. They should also able to present the knowledge in a way that it is understandable by others

CO2- An understanding of modern construction practices. The Construction check lists is closely associated with the knowledge of Construction materials and engineering laboratory tests for different types of works etc. The student will able to analyzes critical path, and resource allocation, towards the end of the course. A basic ability to plan, control and monitor construction projects with respect to time and cost.

CO3- Understand the various equipment related to earth moving, drilling and blasting, pile driving, pumping, stone crushing, air compressors, equipment for moving materials etc. Understand the different types of standard/special equipment used in the construction industry and learn the different sources of equipment, economic life and depreciation cost of equipment.

CO4- A good idea of basic construction dynamics- various stakeholders, project objectives, processes, resources required and project economics. The students should have the knowledge to quality control monitoring in the project, project safety management and construction project information

CO5- An idea how construction projects are administered with respect to contract structures and issues. An idea of how to optimise construction projects based on costs

Module 1	Planning: General consideration, Definition of aspect, prospect, roominess, grouping, circulation, Privacy.	2L
Module 2	Regulation and Bye laws Bye Laws in respect of side space, Back and front space, Covered areas, height of building etc., Lavatory blocks, ventilation, Requirements for stairs, lifts in public assembly building, offices	4L
Module 3:	Fire Protection Fire fighting arrangements in public assembly buildings, planning , offices, and auditorium	2L

Module 4:	Planning &Scheduling of constructions Projects Planning by CPM Preparation of network, Determination of slacks or floats. Critical activities. Critical path. Project duration. Planning by PERT Expected mean time, probability of completion of project, Estimation of critical path, problems	6L
Module 5:	Construction Methods basics Types of foundations and construction methods; Basics of Formwork and Staging; Common building construction methods (conventional walls and slabs; conventional framed structure with blockwork walls; Modular construction methods for repetitive works; Precast concrete construction methods; Basics of Slip forming for tall structures; Basic construction methods for steel structures; Basics of construction methods for Bridges	4L
Module 6	Construction plants & Equipment Plants & equipment for earth moving, road constructions, excavators, dozers, scrapers, spreaders, rollers, their uses. Plants & Equipment for concrete construction Batching plants, Ready Mix Concrete, concrete mixers, Vibrators etc., quality control	3L
Module 7	Contracts Management basics Importance of contracts; Types of Contracts, parties to a contract; Common contract clauses (Notice to proceed, rights and duties of various parties, notices to be given, Contract Duration and Price. Performance parameters; Delays, penalties and liquidated damages; Force Majeure, Suspension and Termination. Changes & variations, Dispute Resolution methods.	4L
Module 8	Management Professional practice, Definition, Rights and responsibilities of owner, engineer, Contractors, types of contract.	3L
Module 9	Departmental Procedures Administration, Technical and financial sanction, operation of PWD, Tenders and its notification, EMD and SD. Acceptance of tenders, Arbritation	2L

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1	3		2	1		2	2	3	1		2	
CO 2			2	1		2	2	3	1		2	2
CO 3		2	2	1		2	2	3	1		2	2
CO 4												
CO 5												
CO 6												

WATER RESOURCE ENGINEERING

Code: CE(PC)603 Contact: 2L (Total: 31 L) Credits: 2

Prerequisites : Physics, Mathematics, Introduction to Civil Engineering & Engineering Hydrology and Introduction to Fluid Mechanics CE(ES)401

COURSE OUTCOME:

At the end of the course, students would be able to -----

CO1: Understand the concepts of irrigation. To describe the basic principles and design parameters of the irrigation CO2- Understand the fundamentals of flow in open channels To select the appropriate method for irrigation network based on specific field

CO3- Estimate the quantity of water required by different crops in different seasons, and accordingly the irrigation water requirement Collect data and calculate the demand of water for agricultural land.

CO4- Design channels and other irrigation structures required for irrigation, drainage, soil conservation, flood control and other water-management projects. To design the hydraulic structures like canals. To detect the water logged area due to over irrigation

CO5- Learn about groundwater resources, aquifers and wells. Apply their knowledge on ground water, well hydraulics to estimate safe yield.

Module 1	Open Channel Flow: Channel Characteristics and parameters, Energy-depth	8L
	relationships, Specific Energy concept, Critical Flow, Hydraulic Jump, Uniform flo	
Module 2	Irrigation: Definition, Necessity, Scope, Benefits of Irrigation; Types, techniques	3L
Module 3:	Soil-water-plant Relationship: Types of crops, cropping seasons, water	6L
	requirement of crops, base period, kor period, Duty, Delta, Commanded area, Net	
	Irrigation Requirement, Field Irrigation Requirement, Gross Irrigati	
Module 4:	Canal irrigation: Classification of irrigation canals, canals in alluvium; Design of	6L
	unlined canals: Kennedy's method, Lacey's method; Lined canals: advantages,	
Module 5:	Land drainage: Water logging issues in irrigation, provision of drains, design and	4 L
Module 6	Groundwater: Occurrence of groundwater- Aquifers, Various Types of Aquifers,	4L
	Aquifer Parameters: Specific Yield, Specific Retention, Storage Coefficient,	
	Transmissivity.	

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1					2	1	1				1	
CO 2						1	1				1	
CO 3					2	1	1				1	
CO 4					2	1	1				1	
CO 5						1	1				1	

Design of Steel structure

Code: CE(PC) 604 Contact: 2L Credits: 2

Prerequisites: Strength of Materials, Structural Analysis, Mathematical Methods and Engineering Mechanics.

Course Outcomes: At the end of the course, the student will be able to:

CO1. Identify the material properties of structural steel, moreover the student will identify different bolted and welded connections, analyse and design them for axial and eccentric load.

CO2 Design different steel sections subjected to axial compression and tension following IS code of practice

CO3 Comprehend the differences between laterally supported and unsupported flexural members. Designing of the flexural members using IS code of practice.

CO4 Analyse and design of rolled and built up compression members along with base connection subject to axial compression, bending and tension.

CO5 Calculate shear force and bending moment on rolled and built up girders, dimension the section and finally design it following IS design guidelines.

CO6: Identify different components of gantry system, calculate lateral and vertical loads acting on the system, dimension the components and design them.

CO7: Design different components of an industrial building.

Syllabus:

Module 1	Materials and Specification: Rolled steel sections, mechanical properties of steel and their specifications for structural use. Codes of practices. Design of Steel structures using tubular, rectangular and square section
Module 2	Structural connections: Riveted, welded and bolted including High strength friction grip bolted joints. – types of riveted & bolted joints, assumptions, failure of joints ,efficiency of joints, design of bolted ,riveted & welded joints for axial load. Eccentric connection:- Riveted & bolted joints subjected to torsion & shear, tension & shear, design of riveted, bolted & welded connection.
Module 3	Design of Tension members: Design of tension members, I.S code provisions. Permissible stresses. Design rules. Examples.
Module 4	Design of Compression members: Effective lengths about major & minor principal axes, I.S code provisions. Permissible stresses, Design rules, Design of
	one component, two components and built up compression members under axial load. Examples. Built up columns under eccentric loading: Design of lacing and batten plates, Different types of Column Bases- Slab Base , Gusseted Base Connection details
Module 5	Design of Beams: Permissible stresses in bending, compression and tension. Design of rolled steel sections, plated beams. simple Beam end connections, beam -Column connections. LS code provisions
Module 6	Design of Plate girders: Design of webs & flanges, Concepts of curtailment of flanges – Riveted & welded web stiffeners, web flange splices - Riveted, welded& bolted.
Module 7	Design of Gantry Girder: Design gantry girder considering lateral buckling – LS code provisions.

Mapping of Course outcomes with Program outcomes

Program outcomes Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	3	3		3	2	2	2	3		2	3
CO 2	3	1		3				1				
CO 3	3	1		3				1				
CO 4	3	1		3				1				
CO 5	3	1		3				1				
CO 6	2		3	2								
CO 7	2		3	2								

Sub: <u>Water Resource Engineering Laboratory</u> Code: CE (PC) 693 Contact: 2P Credits: 1

Pre-requisites: Engineering Hydrology [CE (PC) 502], Water Resource Engineering [CE(PC)603]

Course Outcomes (COs)

After going through this Course, the students will be able to:

- CO 1. Delineate the watershed of any reservoir using DEM.
- CO 2. Determine the average rainfall over a catchment.
- CO 3. Use the rain gauge properly for a specified purpose.
- CO 4. Measure the rate of infiltration of water through the soil.
- CO 5. Measure the sunshine hours in a particular day.

CE(PC)693	Water Resource Engineering Laboratory2P1 Credits						
Course Outcome	On completion of the course, the students will be able to: 14. Delineate the watershed of any reservoir using DEM. 15. Determine the average rainfall over a catchment. 16. Use the raingauge properly for a specified purpose. 17. Measure the rate of infiltration of water through the soil. 18. Measure the sunshine hours in a particular day.						
Prerequisite	Engineering Hydrology CE(PC)502 & Water Resources Engineering CE(PC)603						
Experiment 1	Catchment area delineation (Manually and using DEM)						
Experiment 2	Calculation of average rainfall over a catchment area with arithmetic mean method, Thiessen polygon method and Isobyetal Method.						
Experiment 3	Use of different type of Rain gauges.						
Experiment 4	Measurement of infiltration rate using double ring infiltrometer.						
Experiment 5	Measurement of evaporation using evaporimeter.						
Experiment 6	Measurement of bright sunshine hours using sunshine recorder.						

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	↓											
CO 1	3				3							
CO 2	3	2			2							
CO 3	1				2							
CO 4	3	1			3							
CO 5	2				2							

HYDRAULIC STRUCTURES Code: CE(PE)701C Contact: 2L + 1T (Total: 43L) Credits: 3

Prerequisites : Introduction to Civil Engineering CE(HS)302, Water Resources Engineering CE(PC)603, Fluid Mechanics, RCC Design of Structures

COURSE OUTCOMES:

On successful completion of this course, student should be able to: ------

CO1 : Identify the characteristics of various types of dams and their selection procedure. Plan and design diversion head works. To analyse the functioning of diversion headworks and energy dissipation.

CO2 : Perform the reconnaissance survey and, geophysical investigations necessary for selection of suitable dam site

works, falls and outlets of irrigation network.

CO3 : Estimate forces acting on a gravity dams and perform stability analysis. Analyze gravity and earth dams

CO4 : Estimate the seepage loss through embankment dams and suggest necessary remedial measure.s

CO5: Calculate the discharge through the overflow section and design the appropriate energy dissipation structures. Design spillways and energy dissipations works. Devices

CE(PE)701C	Hydraulic Structures	2L + 1T	3 Credits
Module 1	Storage Structures: Dams, Types of Dams – Embankment dams, gravarious components and their functions	vity dams,	1L + 1T
Module 2	Selection of Dam Site: Site investigations, initial study, reconnaissar geophysical investigations, preliminary selection, evaluation of sele various types of foundation testing, field testing and borrow pit inve detailed investigations; assessment of foundation characteristics and selection of type of dam	4L + 2T	
Module 3:	Gravity Dam: Definition, Features of some important gravity dan acting on a gravity dam, estimation of forces due to: self-weight, water p upstream and downstream face, Uplift pressure, wave pressure, silt wind pressure, earthquake forces, hydrodynamic forces; Stability anal combinations, codal provisions, modes of failures - overturning, slidin and compression failures, factors of safeties, principal stresses; Element of a gravity dam - forces acting, minimum base width - no tension, basis, principal stresses.	8L + 4T	
	Embankment Dams: Definitions, Features of some important en dams; Types of embankment dams and their sectional features; Desig Freeboard - necessity, estimation procedure; Seepage analysis - Lap equations, drainage blanket and rock toe, phreatic line, graphical pu drawing phreatic line, estimation of seepage loss; Stability a embankment dams – slip circle method; Seepage Control - cut-offs, slu sheet piling, grouting, slope protection.	gn criteria; lace's flow rocedure of nalysis of	6L + 2T
	Diversion headworks: Necessity and uses, different types, layout an components; weirs on permeable foundation, Creep theories, Khosla Different types of modules. Canal escapes. Silt control devices		5L + 3T
Module 4:	Spillways and Energy Dissipation Structures: Necessity, types, spillway gates; High overflow ogee spillway - profile, discharge comput equations, factors affecting coefficient of discharge, codal provision basins (USBR and BIS) types	ation, flow	4L + 2T

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

Course outcome ↓									
CO 1	2	2		3	1		1		
CO 2	2	2		3	1		1	2	3
CO 3	3	1	1	3			1		
CO 4	2	2		3					
CO 5	2	2		3					
CO 6									

Prestressed Concrete Code: CE(PC) 702A Prerequisites : Introduction to Solid Mechanics (CE(ES)402), Structural Analysis – I (CE(PC)503), Design of RC Structures (CE(PC)501) Course Outcomes: After going through this course, the students will be able to:

CO1: -Learn the introduction of prestressed concrete member and its deflection properties.

CO2: - Develop the design criteria of prestressed concrete section for flexure and shear properties

CO3: - Analyze the anchorage zone stress for post-tensioned members

CO4: -Impart knowledge regarding the methods of Analysis of Statically Indeterminate Structures.

CO5: - Impart knowledge regarding the composite construction of Prestress and In-situ concrete.

CO6: - Impart knowledge regarding Design of Prestressed concrete poles and sleepers and introduction of partial prestressing

CE(PE)702A	Prestressed Concrete	2L + 1T	3 Credits					
Module 1	Introduction of Prestressed concrete: Materials, prestress analysis of prestress and bending stress, losses Shear and torsiona design of shear reinforcement, design of reinforcement for torsic bending. Deflections of prestressed concrete members: Importance, fa- term and long term deflection	8L+4T						
Module 2	Shear and Torsional Resistance: Design of Shear Reinforcement Reinforcement for Torsion, Shear and Bending. Limit State Design Criteria: Inadequacy of Elastic and Ult Method, Criteria for Limit States, Strength and Serviceability. Design of Prestressed Concrete Section: for Flexure & met and Magnel	8L+4T						
Module 3	Anchorage Zone stresses in post tensioned members: Stress distribution 3L+1T in end block_anchorage zone reinforcement.							
Module 4	Statically Indeterminate Structures: Advantages of Continuou Effect of Prestressing, Methods of Achieving Continuity and Analysis of Secondary Moments	4L+2T						
Module 5	Composite Construction of Prestressed and In-situ Concrete: Types, 3L+1T Analysis of Stresses							
Module 6	Prestressed Concrete Poles and Sleepers: Design of S Compression and Bending. Introduction to Partial Prestressing.	Sections for	2L+2T					

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1	3	1	1	1								1
CO 2	3	2	1	1								1
CO 3	3	3	3	1								1
CO 4	3	3	3	1								2
CO 5	3	3	3	1								2
CO 6	3	3	3	1								2

AIR AND NOISE POLLUTION AND CONTROL

Code: (CEPE) 703A Contact: 2L+1T (Total: 28L & 14T) Credits: 3

Prerequisites: Class XII level knowledge of physics, Chemistry, Mathematics, Biology and Environmental Science; UG level knowledge of Statistics and Environmental Engineering

Course Outcomes: At the end of the course, the student will be able to:

CO1: To define the basic concepts and terminologies regarding air pollution and noise pollution

- CO2: To describe physics of air pollution and noise pollution
- CO3: To apply the methods of air pollution and noise pollution measurements
- CO4: To analyse different concepts of air and noise pollution solving mathematical problems

CO5- To compare air and noise quality with allowable standards and limits

CO6 To choose and design paper techniques for air pollution control and noise pollution control

Syllabus:

Module 1	Air Pollutants Sources; Classification; Effects on Human, Vegetation, Material Effects of Air pollution on Atmosphere: Photochemical Smog, Ozone Layer Depletion, Acid Rain, Greenhouse Effect and Global Warming
Module 2	Air Pollution Meteorology Lapse Rate; Atmospheric Stability; Inversion; Plume Pattern
Module 3	Dispersion of Air Pollutants Point Source Gaussian Plume Model, Stability Classes, Stability Charts, Design of Stack Height
Module 4	Air Quality Methods of Measurement: Gaseous pollutants, Particulate pollutants Air Quality Standards and Indices: Ambient Air Quality Standard, NAAQS, Emission Standard, Air Quality Indices
Module 5	Air Pollution Control Control of Gaseous Pollutants: Adsorption, Absorption, Condensation Control of Particulate Pollutants: Settling chambers, Cyclone separators, Wet collectors, Fabric filters, Electrostatic precipitators Control of Pollution from Automobiles
Module 6	Physics of Noise Basics of Acoustics; Sound Pressure, Power and Intensity and their Interrelations
Module 7	Measurement of Noise Noise Level; Interrelation between Noise, Pressure, Power and Intensity Levels; Noise Meter; Noise Networks; Frequency Band Analysis; Decibel
	Addition Measurement of Community Noise: LN, Leq, Ldn,, LNP
Module 8	Source and Effect of Noise Psychoacoustics and noise criteria; effects of noise on health; annoyance rating schemes
Module 9	Noise Pollution Control Noise Standards and Limits; Methods of Noise Pollution Control

Mapping of Course outcomes with Program outcomes

Program outcomes	-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome	¥												
CO 1		3	1				2	3					
CO 2				3						1			2
CO 3			2		3			3		3			
CO 4		3							2	2			
CO 5					3					3			
CO6		3	2		2						2	2	3

Advanced Structural Analysis Code: CE(PE) 704B

Prerequisites: Introduction to Solid Mechanics CE(ES) 402, Structural Analysis - I and Structural Analysis - II

Course Outcomes: At the end of the course, the student will be able to:

CO1 – Increase basic Knowledge

CO2- Apply Stiffness and Flexibility method using system approach

CO3- Understand the yield conditions from their knowledge of stress-strain relation.

CO4- solve simple plate and shell problems

Syllabus:

Module 1	Matrix methods of structural analysis: Application of matrix methods to plane truss, beams, continuous frames
Module 2	Finite difference and relaxation technique-application to simple problems.
Module 3	Theory of plate bending: Navier's Sol utions. Levy's solution. Plate buckling problem. Membrane theory of domes and cylindrical shells.
Module 4	Theory of Elasticity: Three dimensional stress and strain analysis, stress strain transformation, stress invariants, equilibrium and compatibility equations. Two dimensional problems in Cartesian and polar coordinates. Plane stress, plane stain problems, St. Venant's principle

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1	3	3	3	3	2	1			1		1	1
CO 2	3	3	3	3	3	1			1		1	1
CO 3	3	3	3	3	3	1			1		1	1
CO 4	3	3	3	3	3	1			1		1	1

OmDayal Group of Institutions

Department of Mechanical Engineering

Subject Code: CE 705A	Category: Professional elective Courses
Subject Name: Engineering Materials	Semester: VII
L-T-P: 3-0-0	Credit: 3

Course Objectives:

- 1. Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.
- 2. To provide a detailed interpretation of equilibrium phase diagrams
- 3. Learning about different phases and heat treatment methods to tailor the properties of Fe-C alloys.

Course Content:

Module	Topics	Number
No.		of Classes
1	Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids: Point, line, interfacial and volume defects; dislocation strengthening mechanisms and slip systems, critically resolved shear stress.	6
2	Mechanical Property measurement: Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stressstrain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery; Hardness: Rockwell, Brinell and Vickers and their relation to strength.	6
3	Static failure theories: Ductile and brittle failure mechanisms, Tresca, Vonmises, Maximum normal stress, Mohr-Coulomb and Modified MohrCoulomb; Fracture mechanics: Introduction to Stress-intensity factor approach and Griffith criterion. Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Introduction to nondestructive testing (NDT)	8
4	Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binaryphase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, ferrite and cementite, cast iron.	6
5	Heat treatment of Steel: Annealing, tempering, normalising and spheroidising, isothermal transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding,	6

	carbonitriding, flame and induction hardening, vacuum and plasma hardening	
6	Alloying of steel, properties of stainless steel and tool steels, maraging steels- cast irons; grey, white, malleable and spheroidal cast irons- copper and copper alloys; brass, bronze and cupro- nickel; Aluminium and Al-Cu – Mg alloys- Nickel based superalloys and Titanium alloys	8
	TOTAL LECTURES	40

Course Outcomes:

- 1. Student will be able to identify crystal structures for various materials and understand the defects in such structures
- 2. Able to understand the defects in crystal structure.
- 3. Understand how to tailor material properties of ferrous and non-ferrous alloys
- 4. How to quantify mechanical integrity and failure in materials
- 5. Understand the different techniques of heat treatment of steel.

Sub: Metro System and Engineering

Code CE(OE)701A -

Contact: 2L (Total: 31L)

Credits: 2

<u>**Pre-requisites:**</u> Basic Science, Introduction to Civil Engineering, Surveying, Transportation Engineering.The objective of this course is appreciate of the need for lifelong learning through the discussion of recent changes and studies of highway and transportation engineering, also have the ability to apply knowledge of mathematics, science, and engineering to understand the design techniques and equipment used in highway engineering.

Course Outcomes (COs):

At the end of the course, the student will be able to:

CO 1. Plan and prioritize Mass rapid Transit System networks with consideration of finance and socio-economic condition.

CO 2. Design of Mass Rapid transit System, rolling stock and understand Ventilation System. CO 3. Design Signalling & Telecommunication system for Metro Rail.

CO 4. Design of Elevated structures –Viaducts and Underground Structures- Tunnels.

Module 1	Overview of Metro Systems; Need for Metros; Routing studies; Basic P	4L
Module 2	CIVIL ENGINEERING	12L
	Overview and construction methods for: Elevated and underground	
	Stations; Viaduct spans and bridges; Underground tunnels; Depots; Co	
Module 3:	ELECTRONICS AND COMMUNICATION ENGINEERING	5L
Module 4:	MECHANICAL & TV + AC	5L
Module 5:	ELECTRICAL:	5L

Mapping of Course outcomes with Program outcomes

Program	-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes													
Course	♦												
outcome													

CO 1	3	3	2			2			3	
CO 2	3	3	2		2					
CO 3	3	3	3		1	1				
CO 4	3	3	2	2	2					

PAVEMENT DESIGN Code: CE(PE)705B Contact: 2L (Total: 30L) Credits: 2

Prerequisites : Transportation Engineering (CE(PC)506), Concrete Technology & RCC Design

COURSE OUTCOMES:

At the end of the course, students would be able to ------

CO 1: Differentiate between different types of pavements, both structurally and functionally Expose students to the analysis concepts and procedures for stresses, strains and deflection in pavements.

CO 2. Conduct Axle Load Survey and Estimate Design Traffic. Expose students to the general aspects of pavement structural design, flexible or rigid.

CO 3. Analyze and design bituminous and cement concrete pavement using. Introduce students to the basic types and behaviour of highway materials

CO 4. Understand the principles of Pavement Maintenance and identify various pavement under distresses .

Module 1	Pavement Design Flexible Pavement Design: Stresses and Deflections in homogeneous masses.; Burmister's two layer theory; Three layer and multi-layer theories; wheel load stresses, various factors in traffic wheel loads; ESWL of multiple wheels; McLeod method of design; AASTHO method of flexible pavement design. Low Volume Rigid Pavement: Criteria of Load, Scope and Specifications as per different Govt policies in India, Design Criteria.	13L
Module 2	Pavement Construction and Management Flexible Pavement Construction: Earthwork (Method of Alignment-wise marking using chainage), compaction of embankments, construction methods and field control checks for various types of flexible pavement materials in sub-base, base, binder and surface course layers; Construction procedure of Low Volume Rigid Pavement.	9L
Module 3	Pavement Evaluation - Pavement Distress Functional condition evaluation of pavements- Roughness, Skid Resistance, Serviceability Index; Structural evaluation of pavements –Benkelman beam and Falling Weight Deflectometer; Pavement strengthening; Design of bituminous and concrete overlays as per IRC	8L

Mapping of Course outcomes with Program outcomes

Program outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course outcome ↓												
CO 1	2								1		2	
CO 2											2	
CO 3											2	
CO 4									2			
CO 5												
CO 6												

OmDayal Group of Institutions Department of Electrical Engineering

Subject Code: BS- M 301	Category: Basic Science Course
Subject Name: Mathematics – III	Semester: III
L-T-P: 3-0-0	Credit:3

Course Objectives:

To motivate or challenge students to understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.

Course Content:

Module	Description of Topic	Contact
No		Hrs.
1	Probability: Basic Probability Theory: Classical definition and its limitations. Axiomatic definition. Some elementary deduction: i) $P(O)=0$, ii) $0 \le P(A) \le 1$, iii) $P(A')=1-P(A)$ etc. where the symbols have their usual meanings. Frequency interpretation of probability. Addition rule for 2 events (proof) & its extension to more than 2 events (statement only). Related problems. Conditional probability & Independent events. Extension to more than 2 events (pair wise & mutual independence). Multiplication Rule. Examples. Baye's theorem (statement only) and related problems. Random Variable & Probability Distributions. Expectation: Definition of random variable. Continuous and discrete random variables. Probability density function & probability, mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples. Some important discrete distributions: Binomial & Poisson distributions and related problems. Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only.	8
2	Numerical Methods: Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors. Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation. Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms. Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss- Seidel iterative method. Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method. Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	28
3	Z transform: Sequence, Representation of sequence, Basic operations on sequences, Z-transforms, Properties of Z-transforms, Change of scale, Shifting property, Inverse Z-transform, Solution of difference equation, Region of convergence.	4

Course Outcomes:

After completion of this course, the learners will be able to

- 1. Explain basics of probability theories, rules, distribution and properties of Z transform
- 2. Describe different methods of numerical analysis.
- 3. Solve numerical problems based on probability theories, numerical analysis and Z transform
- 4. Apply numerical methods to solve engineering problems.
- 5. Solve engineering problems using z transform and probability theory.

OmDayal Group of Institutions Department of Electrical Engineering

Subject Code: ES-ME 301	Category: Engineering Science Courses
Subject Name: Engineering Mechanics	Semester: III
L-T-P: 3-0-0	Credit:3

Course Objectives:

- 1. To understand the basic mathematical tools to deal with the physical bodies.
- 2. To learn different mathematical techniques to analyze physical bodies.
- 3. To learn analysis techniques of rigid bodies.
- 4. To solve problem of general motion.

Course Content:

	Description of Tonia	Contact
Module No	Description of Topic	Contact Hrs.
No		5
1	Introduction to vectors and tensors and co-ordinate systems	Э
	Introduction to vectors and tensors and coordinate systems; Vector	
	and tensor algebra; Indical notation; Symmetric and anti-symmetric	
-	tensors; Eigen values and Principal axes.	
2	Three-dimensional Rotation	4
	Three-dimensional rotation: Euler's theorem, Axis-angle formulation	
	and Euler angles; Coordinate transformation of vectors and tensors.	
3	Kinematics of Rigid Body	6
	Kinematics of rigid bodies: Dentition and motion of a rigid body;	
	Rigid bodies as coordinate systems; Angular velocity of a rigid body,	
	and its rate of change; Distinction between two and three dimensional	
	rotational motion; Integration of angular velocity to find orientation;	
	Motion relative to a rotating rigid body: Five term acceleration	
	formula.	
4	Kinetics of Rigid Bodies	5
	Kinetics of rigid bodies: Angular momentum about a point; Inertia	
	tensor: Dentition and computation, Principal moments and axes of	
	inertia, Parallel and perpendicular axes theorems; Mass moment of	
	inertia of symmetrical bodies, cylinder, sphere, cone etc., Area	
	moment of inertia and Polar moment of inertia, Forces and moments;	
	Newton-Euler's laws of rigid body motion.	
5	Free Body Diagram (1 hour)	1
	Free body diagrams; Examples on modelling of typical supports and	
	joints and discussion on the kinematic and kinetic constraints that	
	they impose.	
6	General Motion	9
	Examples and problems. General planar motions. General 3-D	
	motions. Free precession, Gyroscopes, Rolling coin.	
7	Bending Moment	5
	Transverse loading on beams, shear force and bending moment in	
	beams, analysis of cantilevers, simply supported beams and	
	overhanging beams, relationships between loading, shear force and	
	bending moment, shear force and bending moment diagrams.	
		1
8	Torsional Motion	2
---	--	---
	Torsion of circular shafts, derivation of torsion equation, stress and	
	deformation in circular and hollow shafts.	
9	Friction	3
	Concept of Friction; Laws of Coulomb friction; Angle of Repose;	
	Coefficient of friction	

Course Outcomes:

- 1. Explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies.
- 2. Elaborate the theory of general motion, bending moment, torsional motion and friction.
- 3. Develop free body diagram of different arrangements.
- 4. Solve problems with the application of theories and principle of motion, friction and rigid bodies.
- 5. Analyze torsional motion and bending moment.

OmDayal Group of Institutions Department of Chemistry

Course Code : BS301	Category : Basic Science Courses
Course Title : Biology For Engineers Semester : Third	
Duration: 6 months	Credit:3

Course Objectives:

To introduce modern biology with an emphasis on evolution of biology as a multi-

disciplinary field and to make students aware of application of engineering principles in biology and engineering robust solution inspired by biological examples.

Course Content:

Module	Description of Topic	Contact
No	r · · · · · · · · · · · · · · · · · · ·	Hrs.
1	Introduction Purpose: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry	2
2	Classification:Purpose: To convey that classification <i>per se</i> is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus.	3
3	Biomolecules	4
	Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine.	

	Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids.	
4	Macromolecular analysis:	5
	Purpose: To analyze biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	
5	Metabolism	4
	Purpose: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.	
6	Microbiology	3
	Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	
7	Immunology	5
	 Purpose: How does the immune system work? What are the molecular and cellular components and pathways that protect anorganism from infectious agents or cancer? This comprehensivecourse answers these questions as it explores the cells and molecules of the immune system. Immunology- Self vs Non-self, pathogens, human immune system, antigen-antibody reactions. 	
8	Information Transfer	4
	Purpose: The molecular basis of coding and decoding genetic information is universal. Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination	
9	Cancer biology	5
	 Purpose: A basic understanding of cancer biology and treatment. The course is not designed for patients seeking treatment guidance but it can help to understand how cancer develops and provides a framework for understanding cancer diagnosis and treatment. cell Identification of the major types of cancer worldwide. Description of how genes contribute to the risk and growth of cancer. List and description of the ten cellular hallmarks of cancer. Definition of metastasis, and identification of the major steps in the metastatic process. Description of the role of imaging in the screening, diagnosis, staging, and treatments of cancer. Explanation of how 	

	cancer is treated.	
10	Techniques in bio physics	3
	Purpose: Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. The techniques including microscopy, spectroscopy, electrophysiology, single-molecule methods and molecular modeling	
11	Stem cell	2
	Purpose: Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues.	

Course Outcomes:

- 1. Describe with examples the biological observations lead to major discoveries.
- 2. Explain the classification of kingdom of life/ the building blocks of life/ different techniques of bio physics used to study biological phenomena/ the role of imaging in the screening, diagnosis, staging, and treatments of cancer.
- 3. Identify DNA as a genetic material in the molecular basis of information transfer
- 4. Analyze biological processes at the reductionist level.
- 5. Apply thermodynamic principles to biological systems and identify microorganisms

OmDayal Group of Institutions

Department of Electrical engineering					
Subject Code: PC-EE303	Category: Professional Core courses				
Subject Name: Electro Magnetic field	Semester: III				
theory					
L-T-P: 3-0-0	Credit:3				

Department of Electrical engineering

Course Objectives:

To motivate or challenge students to understand and develop the basic mathematical tools to deal with Electromagnetic field Problem, to understand properties and application of Electric and magnetic field to analyze electromagnetic wave propagation and to solve problem related to Electromagnetic field.

Course Content:

Module	Content:	Contact
	Description of Topic	
<u>No</u> 1	Introduction: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different	Hrs. 4
	coordinate systems. Solution of problems	
2	Introduction to Vector calculus: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Strokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz's theorem. Solution of problems	4
3	Electrostatic field: Coulomb's law, field intensity, Gauss's law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor –dielectric, Conductor-free space. Poisson's and Laplace's equation, General procedure for solving Poisson's and Laplace's equation. Solution of problems.	8
4	Magneto static fields: Biot- savart law, Ampere's circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation in material, Magnetic boundary condition, Inductor and Inductances, Magnetic energy, Force on magnetic material. Solution of problems.	8
5	Electromagnetic fields: Faraday's law, Transformer and motional emf, Displacement current, Maxwell's equations, Time varying Potential, Time harmonic fields. Solution of problems	6
6	Electromagnetic wave propagation: Wave equation, Wave propagation in lossy dielectric, Plane waves in loss less dielectric, Plane wave in free space, Plane wave in good conductor, Skin effect, Skin depth, Power & Poynting vector, Reflection of a plane wave at normal incidence, reflection of a plane wave at oblique incidence, Polarisation. Solution of problems	6
7	Transmission line: Concept of lump & distributed parameters, Line parameters, Transmission line equation & solutions, Physical significance of solutions, Propagation constants, Characteristic impedance, Wavelength, Velocity of propagation. Solution of problems	4

Course Outcomes:

On completion of this course a students will be able to

- 1. Relate different coordinate systems for efficient solution of electromagnetic problems. Describe mathematical s tools to solve electromagnetic problems.
- 2. Explain laws applied to electromagnetic field.
- 3. Apply mathematical tools and laws to solve electromagnetic problems.
- 4. Analyze electromagnetic wave propagation
- 5. Estimate transmission line parameters.

Nam	e of the course	ELECTRIC CIRCUIT THE	EORY	
Course Code: PC-EE 301Semester: 3 rd				
Dura	tion: 6 months	Maximum Marks: 100		
Tope	hing Scheme	Examination Scheme		
	8	Mid Semester Exam: 15 Ma	rke	
	•	Assignment & Quiz: 10 Mai		
		Attendance: 05 M		
		End Semester Exam: 70 Ma		
0100				
	Object	tive:		
1.	To understand the structure and properties o and sources.	f different type of electrical c	ircuits, n	etworks
2.	To apply different mathematical tools & tech	hniques for analyzing electric	al netwo	rks.
3.	To apply circuit analysis techniques to simple	· · ·		
4.	To solve problems of electrical circuits.			
	Pre-Req	uisite		
1.	Basic Electrical Engineering (ES-EE-101)	·		
2.	Mathematics (BS-M-102, Bs-M202)			
Unit				Marks
1	Introduction: Continuous & Discrete, Fixe	ed & Time varying, Linear	3	
	and Nonlinear, Lumped and Distributed, Passive and Active networks			
	and systems. Independent & Dependent sources, Step, Ramp, Impulse, Sinusoidal, Square, Saw tooth signals			
2	Graph theory and Networks equations: Concept of Tree, Branch, Tree link, Incidence matrix, Tie-set matrix and loop currents, Cut set matrix and node pair potentials. Duality, Solution of Problems		4	
3	Coupled circuits: Magnetic coupling, Polar		3	
U	induced voltage, Concept of Self and Mutua		5	
	of coupling, Modeling of coupled circuits, S			
4	Laplace transforms: Impulse, Step & Sinus	2	8	
	and RLC circuits. Transient analysis of diffe			
	and without initial conditions. Concept of Co			
	and its application. Solution of Problems with			
5	Fourier method of waveform analysis: Fo		6	
	Transform (in continuous domain only). App	plication in circuit		
6	analysis, Solution of Problems	otwork ornstions 9	8	
6	Network Theorems: Formulation of n	-	0	
	transformation, Loop variable analysis, Nod Network theorem: Superposition, Thevenin	•		
	power transfer theorem. Millman's theorem			
	phase unbalanced circuit analysis. Solution			
	& AC sources.			

7	Two port networks analysis: Open circuit Impedance & Short circuit Admittance parameter, Transmission parameters, Hybrid parameters and their inter relations. Driving point impedance & Admittance. Solution of Problems	4	
8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band pass, Band reject, All pass filters (first and second order only) using operational amplifier. Solution of Problems	4	

- 1. Networks & Systems, Ashfaq Husain, Khanna Book Publishing, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.
- 4. Problems and Solutions of Electric Circuit Analysis, R.K. Mehta & A.K. Mal, CBS, New Delhi

Course Outcome: After completion of this course, the learners will be able to

- 1. describe different type of networks, sources and signals with examples.
- 2. explain different network theorems, coupled circuit and tools for solution of networks.
- 3. apply network theorems and different tools to solve network problems.
- 4. select suitable techniques of network analysis for efficient solution.
- 5. estimate parameters of two-port networks and design filter circuits.

Name	e of the course	ONICS		
Course Code: PC-EE 302		Semester: 3 rd		
Dura	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks	
Practi	ical: 2 hrs/week	Attendance:	05 Marks	
Credi	t Points: 3+1	End Semester Exam:	70 Marks	
Obje				
1.	To understand the structure and properties			
2.	To explain principle of operation of analog		ts and circuits.	
3.	To understand the application of operation			
4.	To solve problems of analog electronic con			
5.	To analyze amplifiers, oscillators and othe	r analog electronic circ	uits.	
	Requisite			
1.	Physics (10+2)			1
Unit	Content		Hrs	Marks
1	Filters & Regulators: Review of half way		4	
	rectifier, Capacitor filters, π -section filter,			
	and shunt voltage regulator, percentage reg			
2	BJT circuits: Structure and I-V characteria		8	
	a switch. BJT as an amplifier: small-s			
	circuits, current mirror; common-emitte			
	common-collector amplifiers; Small signal	equivalent circuits,		
	high-frequency equivalent circuits			
3	MOSFET circuits: MOSFET structure ar		8	
	MOSFET as a switch. MOSFET as an a			
	model and biasing circuits, common- sour			
	common-drain amplifiers; small signal	equivalent circuits -		
	gain, input and output impedances, trans-conductance, high frequency equival	ont circuit		
4	Feed back amplifier & Oscillators: Co		5	
4	Negative & Positive feedback, Voltage/	1	5	
	feedback, Berkhausen criterion, Colpit, Ha			
	Wien bridge, & Crystal oscillators.	arrieg 5, 1 mase smith,		
5	Operational amplifier: Ideal OPAMP, I	Differential amplifier	5	
5	Constant current source (Current mirror	-	5	
	CMRR, Open & closed loop circuits, im			
	loop (positive & negative), inverting & not	*		
	amplifiers, Voltage follower/Buffer circuit	0		

6	Application of Operational amplifiers: Adder, Integrator & Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log & Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current & Current to voltage converter.	5
7	Power amplifier: Class A, B, AB, C, Conversion efficiency	2
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2
9	Special function circuits: VCO & PLL	2

- 1. Malvino-Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, 2019
- 9. L.K. Maheswari, Analog Electronics, Laxmi Publications

Reference books

- 1. Nagchoudhuri, Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand , Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw Hill.

Course Outcome: After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits
- 2. explain principle of operation of analog electronic components, filters, regulators and analog electronic circuits.
- 3. compute parameters and operating points of analog electronic circuits.
- 4. determine response of analog electronic circuits.
- 5. distinguish different types amplifier and different types oscillators based on application and construct operational amplifier based circuits for different applications.

Nam	e of the course	INDIAN CONSTOTU	UTION	
Course Code: MC-EE 301		Semester: 3rd		
Dura	tion: 6 months N	Maximum Marks: 10	0	
Teee	king Sahama I	Fromination Schome		
	8	Examination Scheme		
	5	Mid Semester Exam: 1		
		0	10Marks05Marks	
		End Semester Exam: 7		
Credi	t Points: 0 E	End Semester Exam: /	U Marks	
Obje	ctive:			
1.	To have basic knowledge about Indian Const	titution.		
2.	To understand the structure and functioning		al self-govern	nment.
3.	To understand the structure, jurisdiction and			
Pre-l	Requisite	5		
1.	NIL			
Unit	Content		Hrs	Marks
1	Indian Constitution:		5	
	Sources and constitutional history, Features: Citizenship,			
	Preamble, Fundamental Rights and	Duties, Directive		
	Principles of State Policy			
2	Union government and its administration:	:	10	
	Structure of the Indian Union: Federali	ism, Centre- State		
	relationship, President: Role, power and	position, PM and		
	Council of ministers, Cabinet and Central Sec	cretariat, Lok Sabha,		
	Rajya Sabha.			
	State government and its administration:			
	Governor: Role and Position, CM and Council of ministers,			
	State Secretariat: Organisation, Structure and			
3	Supreme court: Organization of supreme cou	urt procedure of the	10	
-	court, independence of the court, jurisdict	-		
	supreme court.			
	High court: Organization of high court, proc	cedure of the court.		
	independence of the court, jurisdiction and			
	court.	1 1		
	Subordinate courts: constitutional provis	sion, structure and		
	jurisdiction.			
	National legal services authority, Lok ada	lats, family courts,		
	gram nyayalays.			
	Public interest litigation (PIL): meaning of P	PIL, features of		
	PIL, scope of PIL, principle of PIL, guideline	es for admitting PIL		
			10	
4	Local Administration:		10	

District's Administration head: Role and Importance,	
Municipalities: Introduction, Mayor and role of Elected	
Representative, CEO of Municipal Corporation, Pachayati raj:	
Introduction, PRI: Zila Pachayat, Elected officials and their roles,	
CEO Zila Pachayat: Position and role, Block level:	
Organizational Hierarchy (Different departments), Village level:	
Role of Elected and Appointed officials, Importance of grass root	
democracy.	

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, "Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication ltd, India

Course Outcome: After completion of this course, the learners will be able to

- 1. describe
 - different features of Indian constitution..
 - power and functioning of Union, state and local self-government.
 - structure, jurisdiction and function of Indian Judiciary.
 - basics of PIL and guideline for admission of PIL.
 - Functioning of local administration starting from block to Municipal Corporation.
- 2. identify authority to redress a problem in the profession and in the society.

OmDayal Group of Institutions

Department of Mechanical Engineering

Subject Code: ES-EE-401	Category: Professional Core courses
Subject Name: THERMAL POWER	Semester: IV
ENGINEERING	
L-T-P: 3-0-0	Credit:3

Course Objectives:

1. To learn the principle of operation of different types of boilers and Turbines

2. To learn the principle of operation of IC engines and Gas turbines

3. To acquire problem solving skills to solve problems of boilers, turbines, IC engines and Gas turbines

Course Content:

Module	Description of Topic	Contact		
No		Hrs.		
1	Boilers: Water Tube & Fire Tube boilers, Circulating Principles, Forced	12		
	Circulation, Critical pressure, Super heaters, Reheaters, attemperators,			
	induced draught, forced draught and secondary air Fans, Boiler			
	performance analysis and heat balance. Combustion Systems,			
	Environmental Protection – ESP, Cyclone Separator, Dust Collector etc.			
2	Turbines: Rotary Thermodynamic devices – Steam turbines & their	12		
	classifications - Impulse & Reaction type Turbines, Thermodynamics of			
	compressible fluid-flow, equation and continuity – Isentropic flow through			
	nozzles, velocity diagram, Blade efficiency, optimum velocity ratio, multi-			
	staging, velocity & pressure compounding, losses in turbines, erosion of			
	turbine blades, turbine governing, performance analysis of turbine,			
	Condensing system.			
3	IC Engines: IC Engines – classification, Analysis of a standard cycle, fuel	6		
	characteristic of SI & CI Engine, Combustion, Engine performance			
	Automotive Engine exhaust emission and their control			
4	Gas Turbines: Gas turbine Analysis – Regeneration - Reheating, Isentropic	5		
	efficiency Combustion efficiency.			

Course Outcomes:

After completion of this course, the learners will be able to

1. Describe the function of different components boilers. Engines and turbines and solve numerical problems of boilers, turbines, and Gas turbines. Analyze the performance of boilers, engines and turbines. Also determine efficiency of boilers, engines and turbines.

2. Explain the principle of operation of different types of boilers, turbines, IC engines and Gas turbines.

- 3. Describe the function of different components of IC engines
- 4. Explain methods to control boiler, engines and turbines parameters and Gas Turbines.

OmDayal Group of Institutions

Subject Code: MC-EE-401	Category: Basic Science Courses
Subject Name: Environmental Science	Semester: IV
L-T-P: 3-0-0	Credit: 0

Department of Chemistry

Course Objectives:

The students will be able to understand the environment and its relationships with human activities and apply the fundamental knowledge of science and engineering to assess environmental and health risk. It will also help students to understand environmental laws and regulations to develop guidelines and procedures for health and safety issues and acquire the skill to solve problem related to environment and pollution

Course Content:

Module	Description of Topic	Contact
No	Description of Topic	Hrs.
1	 Basic ideas of environment, basic concepts, man, society & environment, their interrelationship Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non- renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step function Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering 	06
2	Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur] Biodiversity- types, importance, Endemic species, Biodiversity Hot- spot, Threats to biodiversity, Conservation of biodiversity.	06
3	 Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems. Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget. Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: 	11

	Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussianplume model. Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference).	
4	 Statement with brief reference). Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenation, reaeration], COD, Oil, Greases, pH. Lake: Eutrophication [Definition, source and effect]. Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiarytreatment definition. Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic 	09
5	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol.	03

Course Outcomes:

- 1. understand the natural environment and its relationships with human activities
- 2. apply the fundamental knowledge of science and engineering to assess environmental and healthrisk
- 3. develop guidelines and procedures for health and safety issues obeying the environmental lawsand regulations
- 4. acquire skills for scientific problem-solving related to air, water, noise & land pollution.

Semester-IV

arks rks Aarks arks		
rks Aarks		
∕larks		
arks		
enerator		
Transformer	S	
Basic Electrical Engineering (ES-EE-101) Electric Circuit Theory (PC-EE-301)		
Hrs	Marks	
	Hrs	

	armature coil. Armature winding and commutation –		
	Elementary armature coil and commutator, lap and wave		
	windings, construction of commutator, linear commutation		
	Derivation of back EMF equation, armature MMF wave,		
	derivation of torque equation, armature reaction, air gap flux		
	density distribution with armature reaction.		
4	DC machine - motoring and generation:		
	Armature circuit equation for motoring and generation, Types		
	of field excitations – separately excited, shunt and series. Open		
	circuit characteristic of separately excited DC generator, back		
	EMF with armature reaction, voltage build-up in a shunt		
	generator, critical field resistance and critical speed. V-I	7	
	characteristics and torque-speed characteristics of separately		
	excited, shunt and series motors. Speed control through		
	armature voltage. Losses, load testing and back-to-back testing		
	of DC machines		
5	Transformers:		
	Principle, construction and operation of single-phase		
	transformers, equivalent circuit, phasor diagram, voltage		
	regulation, losses and efficiency Testing - open circuit and		
	short circuit tests, polarity test, back-to-back test, separation of		
	hysteresis and eddy current losses Three-phase transformer -		
	construction, types of connection and their comparative		
	features, Parallel operation of single-phase and three-phase		
	transformers, Autotransformers - construction, principle,	12	
	applications and comparison with two winding transformer,		
	Magnetizing current, effect of nonlinear B-H curve of		
	magnetic core material, harmonics in magnetization current,		
	Phase conversion - Scott connection, three-phase to six-phase		
	conversion, Tap-changing transformers - No-load and on-load		
1	ton changing of transformers. Three winding transformers		
	tap-changing of transformers, Three-winding transformers. Cooling of transformers.		

.

- 1. Electrical Machines-I, P.S. Bimbhra, Khanna Publishing House (AICTE)
- 2. Electrical Machinery, P.S. Bimbhra, 7th Edition, Khanna Publishers
- 3. Electric machines, D.P. Kothari & I.J Nagrath, 3rd Edition, Tata Mc Graw-Hill Publishing Company Limited
- Electrical Machines, P.K. Mukherjee & S. Chakrabarty, 2nd edition, Dhanpat Rai Publication.

Reference books:

- 1. Electric Machinery & Transformers, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electrical Machines, R.K. Srivastava, Cengage Learning
- 3. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition.
- 4. The performance and Design of Alternating Current Machines, M.G.Say, CBS Publishers & Distributors.
- 5. Electric Machinery & transformer, Irving L Koskow, 2nd Edition, Prentice Hall India

Course Outcome:

- 1. describe the function of different components of magnetic circuit, DC machines and transformers
- 2. explain the principle of operation of different types of DC machines and transformers
- 3. solve numerical problems of DC machines and transformers.
- 4. estimate the parameters and efficiency of transformer.
- 5. determine the characteristics of DC machines and recommend methods to control output of DC machines.

Name	of the course DIG	GITAL ELECTRONICS		
Cours		mester: 4 th		
Durat	ion: 6 months Ma	aximum Marks: 100		
Teach	ing Scheme Exa	amination Scheme		
		id Semester Exam: 15		
		signment & Quiz: 10		
		-	5 Marks	
		d Semester Exam: 70	Marks	
Objec				
1.	To learn the fundamentals of Digital systems and		n of Logic famil	ies.
2.	To learn the principle of operation of Combination	<u> </u>		
3.	To learn the principle of operation of sequential c			
4.	To learn the principle of operation of A/D and D/ $_{-}$		11 1	
5.	To learn the principle of operation of semiconduc		ogrammable log	ic devices.
6. Dro P	To acquire problem solving skills to solve probler	ins of Digital circuits		
рге-к 1.	equisite Analog Electronics (PC-EE-302)			
Unit	Content		Hrs	Marks
1	Fundamentals of Digital Systems and logic	families	1115	Marks
-	Digital signals, digital circuits, AND, OR, NO			
	and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal			
	number, binary arithmetic, one's and two			
	arithmetic, codes, error detecting and c	_	7	
	characteristics of digital ICs, digital logic	-		
	Schottky TTL and CMOS logic, interfacing	CMOS and TTL,		
	Tri-state logic.			
2	Combinational Digital Circuits:			
	1 0	nctions, K-map		
	representation, simplification of Logic function	• •		
	minimization of logical functions. Don't care		_	
	Multiplexer, De-Multiplexer/Decoders, Adder		7	
	BCD arithmetic, carry look ahead adder, seria			
	elementary ALU design, popular MSI chips, c			
	comparator, parity checker/generator, code co	- ·		
	encoders, decoders/drivers for display devices	s, Q-M method of		
2	function realization.			
3	Sequential circuits and systems:	Distable later the		
	A 1-bit memory, the circuit properties of E clocked SP flip flop L K T and D types flip			
	clocked SR flip flop, J- K-T and D types flipf			
	of flipflops, shift registers, applications of shi	-		
	to parallel converter, parallel to serial converter	-	7	
	sequence generator, ripple(Asynchron synchronous counters, counters design using			
	counter IC's, asynchronous sequential counter			
	counter ic s, asynchronous sequential counter	ars, applications of		

	counters.	
4	A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder, D/A converter, specifications for D/A converters, examples of D/A converter, lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs.	
5	Semiconductor memories and Programmable logic devices: Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).	

- 1. Digital Principles & Application, 5th Edition, Leach & Malvino, Mc Graw Hill Company.
- 2. Modern Digital Electronics, 4th Edition, R.P. Jain. Tata Mc Graw Hill Company Limited
- 3. Fundamental of Digital Circuits, A. Anand Kumar, 4th Edition, PHI.
- 4. Digital Electronics, R. Anand, Khanna Publishing House (2018).

Reference books:

- 1. Digital Logic Design, Morries Mano, PHI.
- 2. Digital Integrated Electronics, H. Taub & D. Shilling, Mc Graw Hill Company.
- 3. Digital Electronics, James W. Bignell & Robert Donovan, Thomson Delman Learning.
- 4. Fundamental of logic Design, Charles H. Roth, Thomson Delman Learning.

Course Outcome:

- 1. describe the function of different building blocks of digital electronics, semiconductor memories and programmable logic devices.
- 2. explain the principle of operation of combinational and sequential digital circuits, A/D and D/A converter
- 3. solve numerical problems of Boolean algebra, number system, combinational & sequential digital circuits and A/D and D/A converter.
- 4. specify applications of combinational and sequential digital circuits.
- 5. determine specifications of different digital circuits and design combinational and sequential digital circuits

Name	of the course	ELECTRICAL & ELECTRO	ONICS MEASUR	EMENTS
Cours	e Code: PC-EE-403	Semester: 4th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 15	5 Marks	
Tutor	al: Ohr/week	Assignment & Quiz: 10	Marks	
		-	5 Marks	
Credit	Points: 3	End Semester Exam: 70) Marks	
Objec	tive:			
1.	To learn methods of measurement, errors in me	easurement and its class	ification.	
2.	To learn the principle of operation of analog an	d digital meters.		
3.	To learn the basic principle of operation of inst	÷		
4.	To learn the principle of operation of cathode ra		ferent sensors a	nd
	transducers.			
5.	To learn the principle of measurement of power	r, energy and different	electrical param	ieters
6.	To acquire problem solving skills to solve prob	lems on the topics stud	ied.	
Pre-R	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
Unit	Content		Hrs	Marks
1	Measurements:			
	• Method of measurement, Measurement system, Classification of			
	instruments, Definition of accuracy, Precision,			
	response, Error in measurement, Classification			
	effect due to shunt and series connected instrum	nents.	7	
	Analog meters:			
	• General features, Construction, Principle of			
	equation of Moving coil, Moving iron,	-		
	Induction instruments, Principle of operation o			
	Thermoelectric, Rectifier type instruments, Ex	tension of instrument		
	ranges and multipliers.			
2	Instrument transformer:			
	• Disadvantage of shunt and multipliers, Adv			
	transformers, Principle of operation of C	urrent & Potential		
	transformer, errors. Measurement of Power:		•	
	• Principle of operation of Electrodynamic	e & Induction type	9	
	wattmeter, Wattmeter errors	a muucuon type		
	Measurement of Energy:			
	• Construction, theory and application of AC er	nergy meter testing of		
	energy meters.	inergy meter, testing of		
3	Measurement of resistance:			
-	• Measurement of medium, low and high resist	ances, Megger		
	Potentiometer:	, - 60 -		
	• Principle of operation and application	of Crompton's DC	8	
	potentiometer, Polar and Co-ordinate type	-		
	applications	- /		

	AC Bridges: • Measurement of Inductance, Capacitance and frequency by AC bridges		
4	 Cathode ray oscilloscope (CRO): Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO. Electronic Instruments: Advantages of digital meter over analog meters, Digital voltmeter, Resolution and sensitivity of digital meters, Digital multimeter, Digital frequency meter, Signal generator, Digital Storage oscilloscope. 	7	
5	Sensors & Transducers: • Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement.	4	

- 1. A course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney, Dhanpat Rai & sons.
- 2. Electrical Measurement & Measuring Instruments, E.W. Golding & F.C. Wides, Wheeler Publishing
- 3. Sensors & Transducers, D. Patranabis, PHI, 2nd edition.

Reference books:

- 1. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill, 2nd Edition.
- 2. Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.
- 3. Modern Electronic instrumentation & Measuring instruments, A.D. Heltric & W.C. Copper, Wheeler Publication
- 4. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 5. All-in One Electronics Simplified, A.K. Maini, Khanna Book Publishing Co. (2018)

Course Outcome:

- 1. explain the terms accuracy, precision, resolution, speed of response, errors in measurement, loading effect
- 2. describe methods of measurement of power, energy by instruments and resistance, capacitance and inductance by bridges and potentiometer
- 3. explain the principle of operation of analog meters, instrument transformer, digital multimeter, digital voltmeter, digital frequency meter, signal generator, strain gauge, LVDT and temperature transducers

- 4. explain the different building block, principle of operation of oscilloscope and measurement techniques of voltage, current, frequency and phase by oscilloscope
- 5. solve numerical problems related to analog meters, instrument transformer, measurement of power, energy, resistance, inductance and capacitance. specify applications of analog and digital measuring instruments, sensors and transducers

	e of the course	VALUES AND ETHICS IN	I PROFESSION		
Course Code: HM-EE-401 Semester: 4th					
Durat	ion: 6 months	onths Maximum Marks: 100			
Toach	ing Scheme	Examination Scheme			
	y: 3 hrs/week	Mid Semester Exam: 15	Marks		
	ial: 0 hr/week	Assignment & Quiz: 10			
	cal: 0 hrs/week	-	5 Marks		
	t Points: 3	End Semester Exam: 70			
creur		End Semester Exam. 70			
Objec	tive:				
1.	To inculcate Human values to grow as a respo	nsible human beings wit	h a proper perso	nality.	
2.	To instill Professional Ethics to maintain ethic	al conduct and discharge	e professional du	ities.	
Pre-R	equisite				
1.	Not applicable	-			
Unit	Content		Hrs	Marks	
1	Human values: Morals, Values, and Ethics – Integrity –Trustworthiness – Work Ethics – Service-Learning – Civic Virtue – Respect for others – Living Peacefully – Caring – Sharing – Honesty –Courage – Value Time – Co-operation – Commitment – Empathy – Self-confidence – Spirituality- Character.		5		
2	Principles for harmony: Truthfulness – Customs and Traditions -Value Education – Human Dignity – Human Rights – Fundamental Duties – Aspirations and Harmony (I, We & Nature) – Gender Bias – Emotional Intelligence – Salovey – Mayer Model – Emotional Competencies – Conscientiousness		5		
3	ConscientiousnessEngineering ethics and social experimentation:History of Ethics – Need of Engineering Ethics – Senses ofEngineering Ethics- Profession and Professionalism — Self Interest –Moral Autonomy – Utilitarianism – Virtue Theory – Uses of EthicalTheories – Deontology- Types of Inquiry –Kohlberg's Theory –Gilligan's Argument – Heinz's Dilemma – Comparison with StandardExperiments — Learning from the Past – Engineers as Managers –Consultants and Leaders – Balanced Outlook on Law – Role of Codes– Codes and Experimental Nature of Engineering.		8		
4	Engineers' responsibility towards safety and risk for sustainable development: The concept of Safety – Safety and Risk – Types of Risks – Voluntary v/s Involuntary Risk – Consequences – Risk Assessment –Accountability – Liability – Reversible Effects – Threshold Levels of Risk – Delayed v/s Immediate Risk – Safety and the Engineer – Designing for Safety – Risk-Benefit Analysis-Accidents.		5		
5	Engineers' duties and rights: Concept of Duty – Professional Duties – Col for Achieving Collegiality – Senses of Loy Controversy – Professional and Individual Rig	valty - Consensus and			

	Proprietary Information – Conflict of Interest-Ethical egoism – Collective Bargaining – Confidentiality – Gifts and Bribes – Problem solving-Occupational Crimes- Industrial Espionage- Price Fixing- Whistle Blowing.	7	
6	Global issues: Globalization and MNCs –Cross Culture Issues – Business Ethics – Media Ethics – Environmental Ethics – Endangering Lives – Bio Ethics – Computer Ethics – War Ethics – Research Ethics - Intellectual Property Rights.	5	

- 1. Professional Ethics & Human Values, Premvir Kapoor, Khanna Publishing House, Delhi (AICTE Recommended Textbook).
- 2. A text book on professional Ethics & Human values, R.S. Naagarazan, New Age international Publishing.
- 3. Engineering Ethics, M. Govindarajan, S. Natarajan, V.S. Senthilkumar, Prentice Hall India.
- 4. Human value and professional Ethics, Jayshree Suresh, B.S. Raghvan, S. Chand Publishing

Reference books:

1. Ethics in Science and Engineering, James G. Speight & Russel Foote, Wiley.

Course Outcome:

- 1. illustrate different aspects of human values, ethics, engineers' responsibility and duties
- 2. explain different principles, different theories and laws of engineering ethics and social experimentation
- 3. identify different factors in the light of Engineers' responsibility towards safety and risk
- 4. correlate ethics of different work environment.
- 5. explain the need for intellectual property rights.

Semester-V

Name	e of the course E	LECTRIC MACHIN	NE-II	
Course Code: PC-EE-501		Semester: 5th		
Durat	tion: 6 months M	Maximum Marks: 100		
Teach	ning Scheme E			
Theor	ry: 3 hrs/week M	Iid Semester Exam: 1:	5 Marks	
Tutori	ial: 0hr/week A	ssignment & Quiz: 10) Marks	
Practi)5 Marks	
Credit	t Points: 3 Ei	nd Semester Exam: 70) Marks	
Objec	ctive:			
1.	To understand the arrangement of windings of A	C machines.		
2.	To understand the principle of production of puls	sating and revolving n	nagnetic fields.	
3.	To understand the principle of operation and char	racteristics of three pl	nase Induction n	nachines
4.	To understand the principle of operation and char	racteristics of single p	hase Induction	machines
5.	To understand the principle of operation and char	racteristics of synchro	nous machine	
6.	To understand the principle of operation and char			cal devices.
7.	To solve problems of Induction machines, synchro	ronous machines and	special eletrom	echanical
	devices.			
Pre-R	Requisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)			
Unit	Content		Hrs	Marks
1	Fundamentals of AC machine windings:			
	Physical arrangement of windings in stator and cy	ylindrical rotor; slots		
	for windings; single-turn coil - active portion and	overhang; full-pitch		
	coils, concentrated winding, distributed windin			
	visualization of the above winding types, Air-ga	ap MMF distribution	5	
	with fixed current through			
	winding-concentrated and distributed, Sinusoidal	lly distributed		
	winding, winding distribution factor			
2	Pulsating and revolving magnetic fields:	1 1. J		
	Constant magnetic field, pulsating magnetic field	0		
	in windings with spatial displacement, Magnetic	* •		
	single winding - fixed current and alternating cur		F	
	produced by spatially displaced windings, Windi		5	
	by 90 degrees, Addition of pulsating magnetic fie	elds, Three windings		
	spatially shifted by 120 degrees (carrying three-phase balanced currents), revolving magnetic field.			
3	Induction Machines:	ue neiu.		
5	Construction, Types (squirrel cage and slip-	ring) Torque Slip		
	Characteristics, Starting and Maximum Torque		10	
	Phasor Diagram, Losses and Efficiency. Effect of		10	
	on torque speed characteristics (variation o	*		
	resistances, stator voltage, frequency). Method			
	braking and speed control for induction motors.			
	Self-excitation. Doubly-Fed Induction Machines.			
	Single-phase induction motors:	•		

4	Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications	5
5	Synchronous machines: Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation. Operating characteristics of synchronous machines, V-curves. Salient pole machine - two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators - synchronization and load division.	10
6	Special Electromechanical devices: Principle and construction of switched Reluctance motor, Permanent magnet machines, Brushless DC machines, Hysteresis motor, Stepper motor, Tacho generators.	5

- 1. Electrical Machines -II, P.S. Bimbhra, Khanna Book Publishing House.
- 2. Electrical Machinery, P.S. Bimbhra, Khanna Publishing House.
- 3. Electrical Machines, Nagrath & Kothary, TMH
- 4. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 5. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books:

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

- 1. describe the arrangement of winding of AC machines.
- 2. explain the principle of operation of Induction machines, Synchronous machines and special machines.
- 3. solve numerical problems of Induction machines, Synchronous machines and Special machines.
- 4. estimate the parameters and efficiency of Induction machines and Synchronous machines.
- 5. determine the characteristics of Induction machines and Synchronous machines. select appropriate methods for starting , braking and speed control of Induction machines.

Name	of the course	POWER SYSTEM-I		
Course Code: PC-EE-502Semester: 5th				
Duration: 6 months Maximum Marks: 100				
Teach	ing Scheme I			
Theor	y: 3 hrs/week	Mid Semester Exam: 15	5 Marks	
Tutori	al: Ohr/week	Assignment & Quiz: 10) Marks	
Practi	cal: hrs/week	Attendance: (05 Marks	
Credit	Points: 3	End Semester Exam: 70) Marks	
Objec	tive:			
1.	To understand the basic principle of generation			
2.	To find parameters and characteristics of overhe	ead transmission lines a	and cables.	
3.	To find different parameters for the construction		sion line	
4.	To determine the performance of transmission l	ines.		
5.	To understand the principle tariff calculation.			
6.	To solve numerical problems on the topics studi	ied.		
	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			1
Unit	Content		Hrs	Marks
1	Basic Concepts:			
	Evolution of Power System and present day Scenario. Structure of			
	power system: Bulk power grid and Micro Grid			
	Generation of Electric Power:			
	General layout of a typical coal fired power st		10	
	power station, Nuclear power station, their com			
	principles, comparison of different methods of	of power generation.		
	Introduction to Solar & Wind energy system.			
	Indian Electricity Rule-1956: General Introdu	ction.		
	Overhead transmission line:			
•	Choice of frequency, Choice of voltage, T			
2	Inductance and Capacitance of a single pha	_		
	symmetrical and unsymmetrical configurations		10	
	Transposition. Concept of GMD and GMR. I	niluence of earth on	12	
	conductor capacitance. Overhead line construction:			
	Line supports, Towers, Poles, Sag, Tension and	Clasropas Effact of		
	Wind and Ice on Sag. Dampers.	i Clearance, Effect of		
	Corona: Principle of Corona formation, Critic	al disruptive voltage		
	Visual critical corona discharge potential, Coror	· ·		
	disadvantages of Corona. Methods of reduction			
	assuer antages of corona. Methods of reduction	01 0010110.		
	Insulators: Types, Voltage distribution across a	a suspension insulator		
	string, String efficiency, Arching shield &		05	
	improving voltage distribution across Insulator s		~~	
3	on line Insulators.			

4	Cables: Types of cables, cable components, capacitance of single core & 3 core cables, dielectric stress, optimum cable thickness, grading, dielectric loss and loss angle.	04	
5	Performance of lines: Short, medium (nominal, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.	06	
6	Tariff: Guiding principle of Tariff, different types of tariff.	03	

- 1. Electrical Power System, Subir Roy, Prentice Hall
- 2. Power Systems, A. Ambikapathy, Khanna Publishing House
- 3. Power System Engineering, Nagrath & Kothery, TMH
- 4. Elements of power system analysis, C.L. Wodhwa, New Age International.
- 5. Electrical Power System, Ashfaq Hussain, CBS Publishers & Distributors

Reference books

- 1. Electric Power transmission & Distribution, S.Sivanagaraju, S.Satyanarayana,, Pearson Education.
- 2. A Text book on Power system Engineering, Soni, Gupta, Bhatnagar & Chakrabarti, Dhanpat Rai & Co.
- 3. Electric Power distribution system Engineering, 2nd Edition, T. Gonen, CRC Press.
- 4. www.powermin.nic.in/acts_notification/pdf/ier1956.pdf

Course Outcome:

- 1. explain the principle of generation of Electric power from different sources
- 2. determine parameters of transmission lines and its performance
- 3. explain the principle of formation of corona and methods of its reduction
- 4. conduct electrical tests on insulators and solve numerical problems related to overhead transmission line, cable, insulators and tariff
- 5. analyze overhead transmission line based on short medium and long lines.

Name	e of the course	CONTROL SYSTEM	[
Course Code: PC-EE-503		Semester: 5th		
Dura	Duration: 6 months Maximum Marks: 10		0	
	Teaching Scheme Examination Scheme			
	y: 3 hrs./week	Mid Semester Exam: 1		
	ial: 0hr/week	Assignment & Quiz: 10		
	cal: hrs./week		05 Marks	
Credi	t Points: 3	End Semester Exam: 70) Marks	
Objec	tive [.]			
1.	To find mathematical representation of LTI sy	stems.		
2.	To find time response of LTI systems of differ			
3.	To find the frequency response of LTI systems			
4.	To understand stability of differentLTI systems			
5.	To analyze LTIsystems with state variables.			
6.	To solve problems of mathematical modelling	and stability of LTI sys	tems	
	equisite	, and statisticy of 211 sys		
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)			
Unit	Content		Hrs	Marks
Unit	Introduction to control system:			
1	Concept of feedback and Automatic feedback,Objectives of control system, Det nonlinear systems, Elementary concepts ofsens Types of control systems, Servomechanisms ar offeedback control systems. Transfer functio Zeroes of a transfer function. Propertiesof Transfer function.	finition of linear and sitivity and robustness. nd regulators, examples	04	
2	Mathematical modeling of dynamic systems:Translational systems, Rotational systems, Mechanicalcoupling,Liquid level systems, Electrical analogy of Spring–Mass-Dashpotsystem. Block diagramBlock diagramgram algebra. Signal flow graph. Mason's gain formula.Control system components: Potentiometer, Synchros, Resolvers,Position encoders. DC and ACtacho-generators. Actuators. Blockdiagram level description of feedback control systems forpositioncontrol, speed control of DC motors, temperature control,liquid level control, voltage control of anAlternator.		08	
3	Time domain analysis: Time domain analysis of a standard second ord Concept of undamped natural frequency, dat time and settling time. Dependence of time parameters on natural frequency and damping response of first and second order systems. Eff on transient response. Stability by pole loo criteria and applications. Error Analysis: Steady state errors in control	mping, overshoot, rise e domain performance ratio. Step and Impulse fects of Pole and Zeros cation. Routh-Hurwitz	08	

	ramp and parabolic inputs. Concepts of system types and error		
	constants.		
	Stability Analysis:		
4	Root locus techniques, construction of Root Loci for simple systems.		
	Effects ofgain on the movement of Pole and Zeros.	10	
	Frequency domain analysis of linear system: Bode plots, Polar plots,		
	Nichols chart, Concept of resonance frequency of peak magnification.		
	Nyquist criteria, measure of relative stability, phase andgain margin.		
	Determination of margins in Bode plot. Nichols chart. M-circle and		
	M-Contours inNichols chart.		
	Control System performance measure:		
5	Improvement of system performance through compensation.	05	
	Lead, Lag and Lead- lag compensation, PI, PD and PID control.		
	State variable Analysis:		
	Concepts of state variables. State space model. Diagonalization of		
6	State Matrix. Solution of state equations. Eigenvalues and Stability	10	
	Analysis. Concept of controllability and observability.		
	Pole-placement by state feedback.		
	Discrete-time systems. Difference Equations. State-space models of		
	linear discrete-time systems.		
	Stability of linear discrete-time systems.		

- 1. Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education
- 2. Control System Engineering, I. J. Nagrath & M. Gopal. New AgeInternational Publication.
- 3. Control System Engineering, D. Roy Choudhury, PHI
- 4. Control System, A. Ambikapathy, Khanna Publishing House
- 5. Automatic Control Systems, B.C. Kuo & F. Golnaraghi, 8th Edition, PHI

Reference books

- 1. Control Engineering Theory & Practice, Bandyopadhyaya, PHI
- 2. Control systems, K.R. Varmah, Mc Graw hill
- 3. Control System Engineering, Norman Nise, 5th Edition, John Wiley & Sons
- 4. Modern Control System, R.C. Dorf & R.H. Bishop, 11th Edition, PearsonEducation.
- 5. Control System Design, C. Goodwin Graham, F. Graebe F. Stefan, Salgado.E. Mario, PHI
- 6. Modeling & Control of dynamic system, Macia&Thaler, Thompson
- 7. Modern Control Technology Components & Systems, 3rd edition, C.T Kilian, Cengage Learning
- 8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
- 9. Control System Engineering, R. Anandanatarajan& R. Ramesh Babu, ,SCITECH
- 10. Automatic Control system, A. William, Wolovich, Oxford

Course Outcome:

- 1. developmathematical model of mechanical, electrical, thermal, fluid system and different control system components like servomotors, synchros, potentiometer, tacho-generators etc.
- 2. analyse stability of LTI system using routh-hurtwitz (RH) criteria, root locus techniques in time domain and bode plot and nyquist technique in frequency domain.
- 3. design different control law or algorithms like proportional control, proportional plus derivative(PD) control, proportional plus integration(PI) control, and proportional plus integration plus derivative (PID) control and compensators like lag, lead, lag-lead for LTI systems.
- 4. apply state variable techniques for analysis of linear systems and analyze the stability of linear discrete system.
- 5. solve numerical problems on LTI system modelling, responses, error dynamics and stability.

Name	e of the course P	OWER ELECTRONICS			
Course Code: PC-EE-504		emester: 5 th			
Duration: 6 months Maxim		Iaximum Marks: 100			
Teac	hing Scheme E	xamination Scheme			
	0	Iid Semester Exam: 15 Ma			
	-	ssignment & Quiz: 10 Ma			
		ttendance: 05 M			
		nd Semester Exam: 70 Ma			
Objec	tive:				
1.	To understand the functioning and characteristic	s of power switching devic	es.		
2.	To understand the principle of operation of conv	, Ç			
3.	To understand different triggering circuits and te		of SCR		
4.	To find external performance parameter of conve	-			
5.	To analyze methods of voltage control, improved		eduction of	harmonics	
	of the converter	1			
6.	To solve numerical problems of converters				
Pre-R	equisite				
1.	Electric Circuit Theory (PC-EE-301)				
2.	Analog Electronics (PC-EE-302)				
3.	Electromagnetic field theory (PC-EE-303)				
4.	Digital Electronics (PC-EE-402)				
Unit	Content	Hrs	5	Marks	
1	Introduction: Concept of power electronics, application of pow uncontrolled converters,advantages and disadvar electronics converters, power electronics system power transistors, power MOSFETS, IGBT and	ntages of power s,power diodes, 04			
2	PNPN devices: Thyristors, brief description of members of Thyristor family with symbol, V-Icharacteristics and applications. Two transistor model of SCR, SCR turn on methods, switching characteristics, gate characteristics, ratings, SCR protection, series and paralleloperation, gate triggering circuits, different commutation techniques of SCR.				
3	Phase controlled converters: Principle of operation of single phase and three p controlled, full controlled converters with R, H effects of freewheeling diodes and source performance of converters. External perform converters, techniques of power factor improve	R-L and RLE loads, inductance on the ance parameters of 06			
	and three phase dual converters DC-DC converters:				

4	Principle of operation, control strategies, step up choppers, types of	05
•	choppers circuits based on quadrant of operation, performance	
	parameters, multiphase choppers.	
	Inverters:	
5	Definition, classification of inverters based on nature of input source, wave shape of outputvoltage, method of commutation & connections. Principle of operation of single phase andthree phase bridge inverter with R and R-L loads, performance parameters of inverters, methods of voltage control and harmonic reduction of inverters.	10
6	Resonant Pulse Converters: Introduction, Series Resonant inverter, Parallel Resonant inverter, Zero-Current Switching Resonant converters, Zero-Voltage Switching Resonant converter, Two quadrant Zero-Voltage Switching Resonant converter, Resonant DC link inverter.	05
7	Applications: Speed control of AC and DC motors. HVDC transmission. Static circuit breaker, UPS,static VAR controller.	05

- 1. Power Electronics, M.H. Rashid,4th Edition, Pearson
- 2. Power Electronics, P.S. Bimbhra, Khanna Publishing House.
- 3. Power Electronics, V.R. Moorthi, Oxford.
- 4. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill.

Reference books

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, Mohan, Undeland& Riobbins, Wiley India
- 3. Element of power Electronics, Phillip T Krein, Oxford.
- 4. Power Electronics systems, J.P. Agarwal, Pearson Education.
- 5. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
- 6. Power Electronics, M.S. Jamal Asgha, PHI.
- 7. Power Electronics : Principles and applications, J.M. Jacob, Thomson

Course Outcome:

- 1. differentiate between signal level and power level devices.
- 2. construct triggering and commutation circuits of SCR.
- 3. explain the principle of operation of AC-DC, DC-DC and DC-AC converters.
- 4. analysethe performance of AC-DC, DC-DC and DC-AC converters.
- 5. apply methods of voltage control and harmonic reduction to inverters. solve numerical problems of switching devices, AC-DC, DC-DC and DC-AC converters.

Name	e of the course O	DBJECT ORIENTED	PROGRA	MMING	
Course Code: OE-EE-501B Semester: 5 th					
Dura	Duration: 6 monthsMaximum Marks: 100				
T 1					
	8	xamination Scheme	- > / 1		
	J	Iid Semester Exam: 15			
		ssignment & Quiz: 10			
			05 Marks		
Credit	t Points: 3 E	nd Semester Exam: 70) Marks		
Objec					
1.	To understand simple abstract data types				
2.	To understand features of object-oriented design such as encapsulation, polymorphism, inheritance				
3.	To understand common object-oriented design p	atterns			
4.	To design applications with an event-driven grap	phical user interface.			
Pre-R	equisite				
1.	Programing for problem solving (ES-CS 201)				
Unit	Content		Hrs	Marks	
1	Abstract data types and their specification. How	to implement an	08		
	ADT. Concrete state space, concrete invariant, a Implementing operations, illustrated by the Text	bstraction function.			
2	Features of object-oriented programming. Encap		08		
2	identity, polymorphism – but not inheritance.	sulation, object	00		
3	Inheritance in OO design. Design patterns. Introduction and 08				
-	classification. The iterator pattern.				
	Model-view-controller pattern. Commands as mo	ethods and as	08		
4	objects. Implementing OO language features. Memory management.				
5	Generic types and collections GUIs. Graphical p Scale and Swing . The software development pro	rogramming with	08		

- 1. Mastering Object-Oriented Programming Using C++, R.S. Salaria, Khanna Publishing House.
- 2. Object Oriented Modelling and Design, Rambaugh, James Michael, Blaha Prentice Hall India.
- 3. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH
- 4. Core Java For Beginners, R.K. Das, VIKAS PUBLISHING
- 5. Java How to Program, Deitel and Deitel, 6th ED, Pearson

Reference books

- 1. Object Oriented System Development, Ali Bahrami, McGraw Hill.
- 2. Ivor Horton's Beginning Java 2 SDK Wrox
- 3. Programming With Java: A Primer, E. Balagurusamy 3rd Ed., TMH

Course Outcome:

- 1. specify simple abstract data types.
- 2. recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.
- 3. apply common object-oriented design patterns
- 4. specify uses of common object oriented design patterns with examples.
- 5. design applications with an event-driven graphical user interface.
| ame o | f the course | POWER PLANT EN | GINEERING | |
|---|---|---------------------------|-----------|-------|
| Course Code: PE-EE-501B Semester: 5 th | | | | |
| Durat | tion: 6 months | Maximum Marks: 10 | 0 | |
| | | | | |
| | ing Scheme | Examination Scheme | | |
| Theor | Theory: 3 hrs./week Mid Semester Exam: 15 Marks | | | |
| Tutori | al: Ohr/week | Assignment & Quiz: 10 | | |
| | cal: hrs./week | | 05 Marks | |
| Credit | Points: 3 | End Semester Exam: 70 | 0 Marks | |
| | | | | |
| Objec | | | | |
| 1. | To understand methods of selection of power | | | |
| 2. | To understand the principle of operation differ | | ts. | |
| 3. | Tounderstand methods of site selection of diff | | | |
| 4. | To understand the cause of pollution and its re | | | |
| 5. | To understand methods of cooling of generato | | | |
| 6. | To solve numerical problems of load estimation | on, economics of power | plants. | |
| Pre-Re | equisite | | | |
| 1. | Electric Circuit Theory (PC-EE-301) | | | |
| 2. | Electromagnetic field theory (PC-EE-303) | | | |
| 3. | Electric Machine-I (PC-EE-401) | | | |
| 4. | Electrical and Electronics measurement (PC-E | EE-403) | • | - |
| Unit | Content | | Hrs | Marks |
| | Introduction: | | | |
| | Power and energy, sources of energy, review | | | |
| 1 | cycles related to powerplants, fuels and combu | | 08 | |
| | estimation, load curves, various terms and fac
plantcalculations. Effect of variable load on | | | |
| | Selection of power plant. | power plant operation, | | |
| | Power plant economics and selection: | | | |
| | Effect of plant type on costs, rates, fixed elem | nents, energy elements, | | |
| | customer elements and investor's profit | | | |
| | replacement, theory of rates. Economics of pla | antselection, other | | |
| | considerations in plant selection. | | | |
| | Steam power plant: | | | |
| | General layout of steam power plant, Power | | | |
| 2 | critical and supercritical boilers. Fluidized | | 08 | |
| | mountings and accessories, Different systems | | | |
| | system, pulverizers and coal burners, combu handling system, Dust collection system, | | | |
| | and condenser and cooling towers and co | | | |
| | auxiliary systems such asgoverning, feed hea | | | |
| | heating and gland leakage. Operation andmain | | | |
| 1 | I HEALING AND STAND ICAKAGE. ODELANON ANOMANN | | 1 | 1 |
| | | - | | |
| | plant, heat balance and efficiency, Site selection
steampower plant. | - | | |

operation and efficiency, heat balance, Site selection of diesel	08
powerplant, Comparative study of diesel power plant with	
steampower plant.	
Gas turbine power plant:	
Layout of gas turbine power plant, Elements of gas turbine power	
plants, Gas turbine fuels, cogeneration, auxiliary systems such as fuel,	
controls and lubrication, operation and maintenance, Combined	
cycle power plants, Site selection of gas turbine power plant.	
Nuclear power plant:	
Principles of nuclear energy, Lay out of nuclear power plant, Basic	
components of nuclear reactions, nuclear power station, Nuclear	
waste disposal, Site selection of nuclear power plants.	
Hydro electric station:	10
Hydrology, Principles of working, applications, site selection,	10
Non Conventional Power Plants: Introduction to non-conventional	
power plants (Solar, wind, geothermal, tidal)etc.	
Electrical system:	
Generators and their cooling, transformers and their	
cooling.Instrumentation Purpose, classification, selection and	06
application, recorders and their use, listing of various control	
rooms.Pollution due to power generation and its remedy	
	Gas turbine power plant: Layout of gas turbine power plant, Elements of gas turbine power plants, Gas turbine fuels,cogeneration, auxiliary systems such as fuel, controls and lubrication, operation andmaintenance, Combined cycle power plants, Site selection of gas turbine power plant . Nuclear power plant: Principles of nuclear energy, Lay out of nuclear power plant, Basic components of nuclear reactions, nuclear power station, Nuclear waste disposal, Site selection of nuclear power plants. Hydro electric station: Hydrology, Principles of working, applications, site selection, classification and arrangements, hydro-electric plants, run off size of plant and choice of units, operation and maintenance, hydro systems, interconnected systems. Non Conventional Power Plants: Introduction to non-conventional power plants (Solar, wind, geothermal, tidal)etc. Electrical system: Generators and their cooling, transformers and their cooling.Instrumentation Purpose, classification, selection and application, recorders and their use,listing of various control

- 1. Power Plant Engineering, P.K. Nag, McGraw Hill.
- 2. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd.
- 3. Power Plant Technology El-Vakil, McGraw Hill.

Reference books

- 1. Steam & Gas Turbines & Power Plant Engineering by R.Yadav, Central Pub.House.
- 2. An introduction to thermal power plant engineering and operation, P.K.Das and A.K. Das, Notion press.

Course Outcome:

- 1. explain the principle of operational of Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 2. identify the cause of pollution for power generation and its remedy.
- 3. suggest location to set up Steam, Hydroelectric, Diesel, Gas turbine and Nuclear power plant.
- 4. compare Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 5. suggest methods of maintenance of Steam, Gas and Hydroelectric power plants. solve numerical problems of load estimation and economics of power plants

Semester-VI

Name	e of the course P	POWER SYSTEM-II		
Cours	Course Code: PC-EE-601 Semester: 6 th			
Durat	tion: 6 months	Maximum Marks: 100)	
	0	Examination Scheme		
	J	Mid Semester Exam: 15	5 Marks	
Tutori		Assignment & Quiz: 10) Marks	
Credit				
	E	End Semester Exam: 70) Marks	
Objec	ctive:			
1.	To understand the method of representation of	power system compor	nents	
2.	To know about loacation and components of a d			
3.	To understand different methods of load flow stu	udies.		
4.	To determine faults in Electrical systems.			
5.	To understand the principle of power system sta	bility.		
6.	To understand the principle of relays and method		ver system	
7.	To solve numerical problems on the topics studi	studied.		
Pre-R	Requisite			
1.	Electric Circuit Theory (PC-EE-301)	Circuit Theory (PC-EE-301)		
2.	Electromagnetic field theory (PC-EE-303)			
3.	Power system-I (PC-EE-502)			
Unit	Content		Hrs	Marks
1	Representation of Power system composition	nents: Single-phase		
	representation of balanced three phase networks,	Ũ		
	and the impedance or reactance diagram, per unit	it (PU)	02	
	system.			
	Distribution substation: Types of substa	ations, location of		
	substations, substation equipments and accessor	ries, earthling (system	05	
2	& equipment), feeder and distributors, radial and	d loop		
	systems.			
	Load flow studies: Network model formulation	n, formation of Ybus,		
	load flow problem, Gauss-Siedel method, New	ton-Raphson method,	05	
	Decoupled load flow studies, comparison of load	d flow methods.		
3				
	Faults in Electrical systems: Transient on a tra			
4	circuit of a synchronous machine under no load		08	
	Symmetrical component transformation, seque			
	sequence network of power system, syr			
	transmission lines and transformers. Symmetrica			
	of unsymmetrical faults, single line-to –ground f	fault, lineto-		
	line fault, double line-to- ground fault			

Power system stability: Steady state stability, transient stability,	

5	equal area criteria, swing equation, multi machine stability concept	04	
6	Power system protection: Protective zones, Relaying elements and quantities. Protective relays, basic requirements and type of protection, phase and amplitude comparator, grading (time & current), classification of Electromagnetic relays, Directional relay, Distant relay, Differential relay, basic aspects of static and digital relays, relay protection scheme for transformer, feeder, generators and motors. Circuit breakers, circuit breaking transients, transient recovery voltage, current chopping and resistance switching, circuit breaker rating, arc and arc extinction, circuit breaker types, oil circuit breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit breaker and operating mechanism, advantages and disadvantages of different types	12	

- 1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.
- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I, II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

- 1. Represent power system components in line diagrams.
- 2. Determine the location of distribution substation. Determine the performance of power system with the help of load flowv studies.
- 3. Analyse faults in Electrical systems. Determine the stability of Power system.
- 4. Explain principle of operation of different power system protection equipments.
- 5. Solve numerical problems related to representation, load flow, faults, stabilty and protection of power system.

Name		MICROPROCESSOF CONTROLLER	R & MICRO	
Course Code: PC-EE-602 Semester: 6th				
Durat	ion: 6 months	Maximum Marks: 100)	
	aching Scheme Examination Scheme			
		Mid Semester Exam: 15		
	Futorial: Ohr/weekAssignment & Quiz: 10 Marks			
Credit			05 Marks	
]	End Semester Exam: 70) Marks	
Objec				
1.	To understand the architecture of 8086 micropr		-	
2.	To understand the design aspects of I/O and Me		its.	
3.	To interface microprocessors with supporting c			
4.	To understand the architecture of 8051 microco	ontroller.		
5.	To design a microcontroller based system			
	equisite			
1.	Analog Electronics (PC-EE-302)			
2.	Digital Electronics (PC-EE-402)		**	
Unit	Content		Hrs	Marks
1	The 8086 Microprocessor: Introduction to 808			
	architecture – Addressing modes – Instruction s		0.0	
	directives – Assembly language program		08	
	Programming – Linking and Relocation – Stack			
	Macros – Interrupts and interrupt service routin	nes – Byte and String		
	Manipulation.			
	8086 System bus structure: 8086 signals – 1			
	System bus timing –System design using 8086			
2	Introduction to Multiprogramming - Syste		08	
	Multiprocessor configurations - Coprocessor,			
	loosely Coupled configurations – Introduction t	to advanced		
	processors.			
	I/O INTERFACING: Memory Interfacing a	and I/O interfacing -		
	Parallel communication interface - Serial comm			
	D/A and A/D Interface - Timer - Keyboard		08	
3	Interrupt controller – DMA controller – Program	e 11		
	Case studies: Traffic Light control, LED displa			
	display, Keyboard display interface and Alarm	Controller.		
	Microcontroller: Architecture of 8051	– Special Function		
4	Registers(SFRs) - I/O Pins Ports and Circui		08	
	Addressing modes – Assembly language progra			
	Interfacing Microcontroller: Programming 8	-		
	Port Programming – Interrupts Programming		06	
5	Interfacing – ADC, DAC & Sensor Int		~~	
-	Memory	Enternal		
	Interface- Stepper Motor and Waveform gener	ration – Comparison		

of Microprocessor, Microcontroller, PIC and ARM processors	

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

- 1. explain the architecture of 8086 and 8051.
- 2. do assembly language programming of 8086, 8051
- 3. interface different peripheral with 8086 and 8051
- 4. develop micro processor/ microcontroller based systems.
- 5. compare microprocessor, microcontroller, PIC and ARM processors

Name	e of the course D	IGITAL CONTROI	SYSTEM	
Cours	se Code: PE-EE-601A Se	emester: 6th		
Durat	tion: 6 months M	laximum Marks: 100)	
		xamination Scheme		
Theory: 3 hrs/week Mid Semester Exam: 15 Marks				
Tutorial: 0hr/week Assignment & Quiz: 10 Marks				
Credit Points: 3 Attendance: 05 Marks				
	Eı	nd Semester Exam: 70) Marks	
Objec	stive.			
1.		netruction of signals		
1. 2.	To understand the principle of sampling and reco To find Z-tranaform and inverse Z-transform of s			
2. 3.	To carry out the analysis and design of digital con			
	To design compensators for digital control system		nacifications	
<u>4.</u> 5.			pecifications.	
5. 6.	To represent digital control systems using state sp To analyze the effect sampling on stability, contr		bility	
7.	To design digital controllers for industrial applica		ionity.	
7. 8.	To solve numerical problems on the topics studie			
	Requisite	<i>.</i>		
1.	Control system (PC-EE-503)			
Unit	Content		Hrs	Marks
1	Sampling and reconstruction: Introduction, Example 2010	amples of Data	ms	Warks
1	control systems – Digital to Analog conversion a		03	
	Digital	ind Finding to	05	
	conversion, sample and hold operations.			
	Z-transform: Introduction, Linear difference equ	uations nulse		
	response, $Z - transforms$, Theorems of		05	
2	the inverse Z – transforms, Modified Z- Transfor		05	
-	Z- Plane analysis of discrete-time control sy			
	method for solving difference equations; Pulse		05	
	block diagram analysis of sampled – data system		05	
3	s-plane and z-plane.	is, mapping between		
5	s pluie and 2 pluie.			
	State space analysis: State Space Representation	ion of discrete time		
4	systems, Pulse Transfer Function Matrix solving			
	space equations, State transition matrix and it's			
	for Computation	of State	06	
	Transition Matrix, Discretization of continuous ti	ime state – space		
	equations.			
	Controllability and observability: Concepts of	f Controllability and		
	Observability, Tests for controllability and Ot		04	
5	between Controllability and Observability, Contr			
	Observability conditions for Pulse Transfer Func	tion		
6	Stabilty analysis: Mapping between the S-Plane	and the Z-Plane –	05	
		rips – Constant		
	frequency loci, Constant damping ratio loci, S			
	of	- •		

	closed loop systems in the Z-Plane. Jury stability test – Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.	
7.	Design of discrete time control system by conventional methods:Transient and steady – State response Analysis – Design based on the frequency response method –Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PID controllers.	06
8.	State feedback controllers and observers:Design of state feedbackcontroller through pole placement – Necessary and sufficientconditions,Ackerman'sState Observers – Full order and Reduced order observers.	05

- 1. Digital Control and State Variable Methods , M. Gopal, TMH Publishers
- 2. Discrete-time Control Systems, K. Ogata, Pearson Education,
- 3. Digital Control Systems, B.C. Kuo, Wiley Publications.
- 4. Control System Engineering, I.J. Nagrath, M. Gopal, New age International.

Reference books

- 1. Digital control of dynamic systems, Gene F. Franklin, J. David Powell, and Michael Workman 3rd ed, 1998, Addison-Wesley.
- 2. Digital Control Systems, design, identification and implementation, Landau, Ioan Doré, Zito, Gianluca, Springer-Verlag London.

Course Outcome:

- 1. explain the principle of sampling and reconstrction of analog signal.
- 2. perform Z-transformation and inverse Z-tranaformation of systems.
- 3. analyse and design digital control systems. design compensators for digital control system to achieve desired specifications.
- 4. represent digital control systems using state space models.
- 5. analyze the effect sampling on stability, controllability and observability.

Name	e of the course	ELECTRICAL MACI	HINE DESIG	N
Cour		Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
T 1				
	8	Examination Scheme Mid Semester Exam: 15	Montro	
	5	Assignment & Quiz: 10		
	Credit Points: 3 Attendance:		5 Marks	
Cieui		End Semester Exam: 70		
	· · · · · · · · · · · · · · · · · · ·	End Semester Exam. 70	, wiarks	
Obje	ctive:			
1.	To understand the baisc principle of design of I	Electric machines.		
2.	To understand basics of design of Transformer,	Induction machine and	Synchronous	machines.
3.	To understand different factors that influence d	esign of Electric machin	nes.	
4.	To undertand the need and use software tools for		chines	
5.	To solve numerical problems on the topics stud	lied		
	Requisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501) Content		I Ino	Marks
Unit		i al Mashina Dasian	Hrs	Marks
1	Introduction: Major considerations in Electrical Machine Design - Electrical Engineering Materials – Space factor – Choice of Specific			
	Electrical and Magnetic loadings - Thermal considerations - Heat		04	
	flow – Temperature rise and Insulating Materials - Rating of machines		01	
	- Standard specifications.	is fracing of machines		
	Transformer: Output Equations – Main Dimen	sions - kVA output for		
	single and three phase transformers – Window	space factor – Design	10	
	of core and winding – Overall dimensions – Op			
2	- No load current - Temperature rise in Tran			
	Tank - Methods of cooling of			
	Transformers.			
	Induction motors: Output equation of Indu	uction motor - Main		
3	dimensions - Choice of Average flux density		10	
	Rules for selecting rotor slots of squirrel cage			
	rotor bars & slots – Design of end rings – De			
	Magnetic leakage calculations – Leakage re			
	machines- Magnetizing current - Short circuit c characteristics- Losses and Efficiency.	current – Operating		
	Synchronous machines: Output equations – cl		10	
4	Magnetic Loading – Design of salient pole ma		10	
4	ratio – shape of pole face – Armature design – – Estimation of air gap length – Design of rot	1		
	winding – Determination of full load field mmf			
	of field winding – Design of turbo alternators –			
		_		
	Computer aided Design (CAD): Limita of	ations (assumptions)	05	
	traditional designs, need for CAD analysis,	cynthecic and hybrid	05	

methods, design optimization methods, variables, constraints and	
objective function, problem formulation.	

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

- 1. specify the rating of electrical machines with standard specifications.
- 2. explain the principles of electrical machine design and carry out basic design of an ac machine
- 3. determine the various factors which influence the design of electrical, magnetic and thermal loading of electrical machines
- 4. explain the construction and performance characteristics of electrical machines.
- 5. use software tools to do design calculations.

Name	of the course	INDUSTRIAL ELEC	TRICAL SYST	EMS
Cours	se Code: PE-EE-602C	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 10	0	
Toool	ing Schomo	Examination Scheme		
Teaching SchemeExamination SchemeTheory: 3 hrs/weekMid Semester Exam: 15 Marks				
		Assignment & Quiz: 10		
			05 Marks	
Cicui		End Semester Exam: 70		
	1	Life Semester Exam. 70		
Objec	tive:			
1.	To understand the electrical wiring systems with	h standard symbols, dr	awings and SLI) for
	residential, commercial and industrial consumer	•	U	
2.	To understand various components of industrial			
3.	To analyze and selec the proper size of various		ponents	
4.	To understand methods of automation of Indust			
5.	To solve numerical problems on the topics studi	ied		
Pre-R	lequisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
	Electrical System Components: LT system			
	selection of cables, wires, switches, distribution			
	Tariff structure, protection components- Fuse, I		06	
1	inverse current characteristics, symbols, single l			
1	a wiring system, Contactor, Isolator, Relays, Mi	PCB, Electric		
	shock and Electrical safety practices			
	Residential and Commercial Electrical			
	residential and commercial wiring systems			
•	guidelines for installation, load calculation and		0.0	
2	of main switch, distribution board and protect		08	
	system calculations, requirements of com			
	deciding lighting scheme and number of	lamps, eartning of		
	commercial installation, selection and sizing of components.			
	Illumination Systems : Understanding various			
	lumen, intensity, candle power, lamp			
	consumption, glare, space to height ratio,			
3	depreciation factor, various illumination scheme			
	and modern luminaries like CFL, LED and th		06	
	saving in illumination systems, design of a light	1 01		
	for a residential and commercial premises, flood			
	Industrial Electrical Systems I: HT c			
	substation, Transformer selection, Industrial loa			
	substation, fransformer selection, maustifal loa	wo, motors, starting		

4	of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.	06
5	Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.	06
6.	Industrial Electrical System Automation : Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.	

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

- 1. Represent electrical wiring system for residential, commercial and industrial consumers.
- 2. Determine the rating of components of residential and commercial electrical systems.
- 3. Design lighting scheme for a residential and commercial premises.
- 4. Select transformer, switchgear, protection equipments for industrial electrical systems. explain methods of automation of Industrial Electrical Systems
- 5. Solve numerical problems related to earthing system, lighting scheme, power factor correction.

Name	of the course	DIGITAL SIGNAL P	ROCESSING		
Course Code: OE-EE-601A		Semester: 6th			
Durat	aration: 6 months Maximum Marks: 100				
	8				
	y: 3 hrs/week	Mid Semester Exam: 1.			
	al: 0 hr/week	Assignment & Quiz: 10			
Credit	edit Points: 3 Attendance: 05 Marks				
		End Semester Exam: 70	0 Marks		
Objec	tivo.				
1.	To understand sampling and reconstruction of	cional			
2.	To understand the method of Z-transform and	inverse 7- transform of	signal and its pr	operties	
3.	To understand the method of 2-transform and To understand Discrete Fourier Transform		signal and its pi	operties	
4.	To understand methods of design of Digital fil	ters			
5.	To understand applications of Digital signal pr				
6.	To solve numerical problems on the topics stud				
	equisite				
1.	Electric circuit theory (PC-EE-301)				
2.	Control system (PC-EE-503)				
Unit	Content		Hrs	Marks	
	Discrete-time signals and systems: Disc	rete time signals and			
	systems: Sequences; representation of si	U			
	basis; Representation of discrete syster		06		
	equations, Sampling and reconstruction of	6			
1	Sampling theorem and Nyquist rate.	signais unusing,			
	Z-transform: z-Transform, Region of conv	vergence. Analysis of			
	Linear Shift Invariant systems using z-trai				
	z-transform for causal signals, Interpretat				
2	domain, Inverse z- transforms.	ion of studinty in 2			
	Discrete Fourier Transform : Frequence	y Domain Analysis			
	Discrete Fourier Transform (DFT), F				
	Convolution of signals, Fast Fourier Tr	1	08		
3	Parseval's Identity, Implementation of Dis	0			
	Tarsevar s reentity, implementation of Dis	erete Thile Systems.			
	Design of Digital filters: Design of FIR Di	igital filters: Window			
	method, Park-McClellan's method. Design	•			
	Butterworth, Chebyshev and Elliptic Ap	Ū.			
4	pass, Band-pass, Bandstop and High- pass	-			
	register length in FIR filter design. P		12		
	parametric spectral estimation.				
	Introduction to multi-rate signal processing	g			
	Applications of Digital Signal Processin				

5	Functions and Power Spectra, Stationary Processes, Optimal		
	filtering using ARMA Model, Linear Mean-Square Estimation,	06	
	Wiener Filter.		

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

- 1. represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

Name	e of the course	COMMUNICATION	ENGINEERIN	NG
Course Code: OE-EE-601B		Semester: 6th		
Duration: 6 months Maximum Marks: 100				
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 15		
	al: 0 hr/week	Assignment & Quiz: 10		
Credit	Points: 3		05 Marks	
		End Semester Exam: 70) Marks	
Obio	ti vo			
Obje 1.	To understand the AM, FM and PM schemes v	with reference to SNP		
2.	To understand the performance of ASK, FSK,		digital commu	niaction
۷.	system	rsk, drsk, grsk iii a	l digital commu	Incation
3.	To understand the source coding and channel of	coding schemes for a giv	ven communicat	tion link
5.	To understand the source county and channel (county senemes for a giv	en communeat	lion mik
4.	To understand the band width requirement and	l probability of error in v	various digital n	nodulation
	systems	1 5	8	
5.	To understand various digital modulation meth	and various digital modulation methods		
6.	To solve numerical problems on the topics stud			
Pre-R	lequisite			
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
1	Elements of communication system: communication system, origin of noise and it SNR in system design. Basic principle of lin Generation of AM waves, Demodulation of AM of nonlinear (FM, PM) modulation. Gene Demodulation of FM waves. Sampling the impulse sampling, reconstruction from samp pulse modulation-PAM (natural & flat topped s Basic concept of Pulse code modulation, Bloch of PCM, Multiplexing-TDM, FDM.	s effect, importance of hear (AM) modulation, <i>I</i> wave. Basic principle ration of FM waves. eorem, sampling rate, ples, Aliasing. Analog sampling), PWM, PPM. k diagram	12	
2	Digital transmission: Concept of Quantization Uniform quantizer, Non-uniform quantizer, Encoding, coding efficiency. Line coding & p AMI, Manchester coding, PCM, DPCM transmission, Matched filter, error rate due to n function, Nyquist criterion for distortion-le transmission, Eye pattern, Signal power in bina signal.	, A-law and μ -law. properties, NRZ & RZ, I. Base band pulse poise, ISI, Raised cosine ess base band binary	08	
3	Digital carrier modulation & demodulation Baud rate, Information capacity, Shanon's l encoding, Introduction to the different digital modulation ASK.FSK, PSK, BPSK, QPSK, mention BPSK.	limit, M-ary 1 techniques-	10	

	Introduction to QAM, basic of 8 QAM, 16 QAM. Basic concept of Delta modulating, Adaptive delta modulation. Introduction to the concept DPCM. Basic concept of spread spectrum modulation.		
4	Introduction to coding theory: Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon's theorem- source coding theorem, Channel coding theorem, Information capacity theorem. Basic principle of Error control & coding.	08	

- 1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.
- 2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.
- 3. Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.
- 4. Modern Digital and Analog Communication systems, B.P. Lathi, Oxford university press

Reference books

- 1. Digital and Analog communication Systems, Leon W Couch II, Pearson Education Asia.
- 2. Communication Systems, A.B. Calson, Mc Graw Hill.
- 3. Communication Systems, R. Anand, Khanna Publications.

Course Outcome:

- 1. compare the performance of AM, FM and PM schemes with reference to SNR
- 2. explain noise as a random process and its effect on communication receivers
- 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital communication system
- 4. identify source coding and channel coding schemes for a given communication link
- 5. analyze various digital modulation methods. compute band width requirement and probability of error in various digital modulation systems

		ECONOMICS FOR E	NGINEERS	
		Semester: 6th		
Duration: 6 months Maximum Marks:		Maximum Marks: 100)	
Teach	ning Scheme	Examination Scheme		
	8	Mid Semester Exam: 15	5 Marks	
		Assignment & Quiz: 10		
			05 Marks	
		End Semester Exam: 70) Marks	
Objec				
1.	To understand the process of economic decisio			
2.	To understand th basic financial management a			
3.	To develop the skills to analyze financial state	ments		
4.	To understand the basic of accounting			
<u>рге-к</u> 1.	Requisite Basic understanding of Engineering processes			
I. Unit	Content		Hrs	Marks
Unit	Economic Decisions Making – Overview, Pro	blems Role Desision	1115	IVIAI NS
1	Engineering Costs & Estimation – Fixed, Average Costs, Sunk Costs, Opportunity C Nonrecurring Costs, Incremental Costs, Cash Life-Cycle Costs; Types Of Estimate, Estima Model, Segmenting Model, Cost Indexes, Pow Improvement & Learning Curve, Benefits.	Costs, Recurring And Costs vs Book Costs, ting Models - PerUnit	06	
2	Cash Flow, Interest and Equivalence: Cas Categories & Computation, Time Value Of Me Nominal & Effective Interest. Present Worth Analysis : End-Of-Year Conv Economic Analysis Studies, Borrowed Money Inflation & Deflation, Taxes, Economic Crite Worth Techniques, Multiple Alternatives. Cash Flow & Rate Of Return Analysis – Calc Salvage Value, Annual Cash Flow Analys Internal Rate Of Return, Calculating Rate O Analysis; Best Alternative Choosing An Ana Worth Analysis, Benefit-Cost Ratio Analy Breakeven Analysis. Economic Analysis In Quantifying And Valuing Benefits & drawbacks.	oney, Debt repayment, vention, Viewpoint Of v Viewpoint, Effect Of eria, Applying Present culations, Treatment of sis, Analysis Periods; Of Return, Incremental alysis Method, Future ysis, Sensitivity And	10	
3	Uncertainty In Future Events - Estimates And Analysis, Range Of Estimates, Probabili Distributions, Expected Value, Economic Deci vs Return, Simulation, Real Options. Depreciation - Basic Aspects, Deteriorat Depreciation And Expenses, Types Of F	ty, Joint Probability ision Trees, Risk, Risk ion & Obsolescence,	10	

	Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.	
4	Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost Life Problems. Inflation And Price Change – Definition, Effects, Causes, Price Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.	08
5	Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	

- 1. Sociology & Economics for Engineers, Premvir Kapoor, Khanna Publishing House.
- 2. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e, McGraw-Hill Education.
- 3. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle, OUP
- 4. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt, Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, ,Professional Pub

Course Outcome:

- 1. evaluate the economic theories, cost concepts and pricing policies
- 2. explain the market structures and integration concepts
- 3. apply the concepts of financial management for project appraisal. explain accounting systems, the impact of inflation, taxation, depreciation
- 4. analyze financial statements using ratio analysis
- 5. explain financial planning, economic basis for replacement, project scheduling, legal and regulatory issues applied to economic investment and project-management problems

Semester-VII

Name	e of the course	ELECTRIC DRIVE		
Cours	e Code: PC-EE 701	Semester: 7 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	Marks	
Practi	cal: 0 hrs/week	Attendance: C	5 Marks	
Credit	t Points: 3	End Semester Exam: 70) Marks	
Objec				
1.	To understand basic concept, classification an	nd principle of operation	of Electric Drive	e.
2.	To understand methods of starting and brakin	g of Electric Drive.		
3.	To understand methods of control of speed of	DC and AC Drives.		
4.	To solve problem related to Electric Drive.			
Pre-R	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Machine-I (PC-EE-401)			
3.	Electric Machine-II(PC-EE-501)			
Unit	Content		Hrs	Marks
1	Electric Drive: Concept, classification, pa	e	5	
	electrical dives. Types of Loads, Components of load toques,			
	Fundamental torque equations, Equivalent va			
	for loads with rotational and translational me			
	moment of inertia, Steady state stability, Tran			
2	quadrant operation of drives. Load equalization Motor power rating: Thermal model of		5	
2	cooling, classes of motor duty, determination		5	
	continuous, short time and intermittent du			
	torque and power methods of determination			
	and intermittent loads. Effect of load inertia &			
	factors.			
3	Stating of Electric Drives: Effect of starting		6	
	and load. Methods of stating of electric mot			
	Energy relation during stating. Methods to	reduce the Energy loss		
	during starting.	a hustring of DC mater		
	Braking of Electric Drives: Types of braking			
	Induction motor and Synchronous motor, Ene during braking,	ngy 1088		
4	DC motor drives: Modeling of DC motors,	State space modeling	8	
-	block diagram & Transfer function, Single p		0	
	controlled and half controlled DC drives. Dua			
	DC drives. Power factor, supply harmonics an			

	current. Chopper controlled DC motor drives. Closed loop control of DC Drives.	
5	Induction motor drives: Stator voltage variation by three phase controllers, Speed control using chopper resistance in the rotor circuit, slip power recovery scheme. Pulse width modulated inverter fed and current source inverter fed induction motor drive. Volts/Hertz Control, Vector or Field oriented control.	6
6	Synchronous motor drives: Variable frequency control, Self Control, Voltage source inverter fed synchronous motor drive, Vector control.	5
7	Introduction to Solar and Battery Powered Drive, Stepper motor, Switched Reluctance motor drive Industrial application: Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.	5

- 1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.
- 2. Electric Drives, Vedam Subrahmanyam, TMH
- 3. A first course on Electrical Drives, S.K. Pillai, , New Age International Publication.

Reference books:

- 1. Electric motor drives, R. Krishnan, PHI
- 2. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 3. Electric Motor & Drives. Austin Hughes, Newnes.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the principle of operation of Electric Drive.
- 2. describe different methods of starting and braking of Electric Drive.
- 3. model and control DC Drive
- 4. control speed of Induction and Synchronous motors.
- 5. recommend drives for different applications. estimate ratings, variables and parameters of Electric Drives.

Name		ELECTRICAL ENER & AUDITING	RGY CONSE	CRVATION
Cours	e Code: PE-EE 701B	Semester: 7 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme I	Examination Scheme		
		Mid Semester Exam: 15		
	-	Assignment & Quiz: 10		
Practi			5 Marks	
Credit	: Points: 3	End Semester Exam: 70	Marks	
Objec	tive:			
1.	To understand the basic of energy resources, en	ergy security, energy co	onservation an	d pollution.
2.	To understand the energy management concepts	S.		
3.	To understand energy conservation principles a			
4.	To learn the methods of energy audit and usage	of instruments		
Pre-R	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Machine (PC-EE-401, PC-EE-501)			
3.	Electric Power system (PC-EE-502, PC-EE-601)			
4.	Control System (PC-EE-503)			
Unit	Content		Hrs	Marks
1	Energy Scenario: Commercial and Non-commercial	ercial energy, Primary	5	
	energy resources, commercial energy prod			
	consumption, energy needs of growing econor			
	scenario, energy pricing, energy sector re			
	environment, energy security, energy conservati			
	restructuring of the energy supply sector, energy			
	strategy for the future, air pollution, clim Conservation Act-2001 and its features.	hate change. Energy		
2	Basics of Thermal Energy management :	Thormal Rasias fuals	5	-
Z	thermal energy contents of fuel, temperatu		5	
	capacity, sensible and latent heat, evaporation,			
	moist air and humidity & heat transfer, units and			
3	Energy Management & Audit: Definition, ene		6	
	of energy audit. Energy management (audit) ap			
	energy costs, bench marking, energy performa	ince, matching energy		
	use to requirement, maximizing system efficie	encies, optimizing the		
	input energy requirements, fuel &			
	energy substitution, energy audit instruments.			
	balance: Facility as an energy system, methods	for preparing process		
	flow, material and energy balance diagrams.			
4	Energy Efficiency in Electrical Systems: E		8	
	management and maximum demand con			
	improvement, selection & location of capacitors	s, remominance		

	assessment of PF capacitors, distribution and transformer losses.	
	Electric motors: Types, losses in induction motors, motor efficiency,	
	factors affecting motor performance, rewinding and motor	
	replacement issues, energy saving opportunities with energy	
	efficient motors.	
5	Energy Efficiency in Industrial Systems: Compressed Air System:	
	Types of air compressors, compressor efficiency, efficient compressor	
	operation, Compressed air system components, capacity assessment,	
	leakage test, factors affecting the performance and savings	
	opportunities in HVAC, Fans and blowers: Types, performance	10
	evaluation, efficient system operation, flow control strategies and	10
	energy conservation opportunities. Pumps and Pumping System:	
	Types, performance evaluation, efficient system operation, flow	
	control strategies and energy conservation opportunities. Cooling	
	Tower: Types and performance evaluation, efficient system operation,	
	flow control strategies and energy saving	
	opportunities, assessment of cooling towers.	
6	Energy Efficient Technologies in Electrical Systems: Maximum	6
	demand controllers, automatic power factor controllers, energy	
	efficient motors, soft starters with energy saver, variable speed drives,	
	energy efficient transformers, electronic ballast, occupancy sensors,	
	energy efficient lighting controls, energy saving potential of	
	each technology.	

- 1. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-1, General Aspects (available online)
- 2. Guide books for National Certification Examination for Energy Manager / Energy Auditors Book-3, Electrical Utilities (available online)
- 3. Electric Energy Utilization and Conservation, S. C. Tripathy, Tata McGraw Hill, 1991.

Reference books:

1. Success stories of Energy Conservation by BEE, New Delhi (www.bee-india.org)

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the basic of energy resources, energy security, energy conservation and pollution.
- 2. quantify the energy conservation opportunities in different thermal systems
- 3. quantify the energy conservation opportunities in different electrical systems
- 4. identify the common energy conservation opportunities in different energy intensive industrial equipments
- 5. explain the methods of energy management and audit.. analyse and report the outcome of energy audit.

Course Code: OE-EE-701A Duration: 6 months	Semester: 7th		
Duration: 6 months			
	Maximum Marks: 10)	
Teaching Scheme	Examination Scheme		
Theory: 3 hrs/week	Mid Semester Exam: 1:	5 Marks	
Tutorial: 0hr/week	Assignment & Quiz: 10		
Credit Points: 3		05 Marks	
creat rolling. 5	End Semester Exam: 70		
Objective:			
1. To understand the basic concepts, theories a intelligence.	nd state-of-the-art techr	iques of artifici	al
2. To understand basic concepts and application	ns of machine learning.		
3. To learn the application of machine learning,	/A.I algorithms in the dif	ferent fields of s	cience,
medicine, finance etc.			
Pre-Requisite			
1. Programming for problem solving (ES-CS201)			
2. Mathematics (BS-M301)			
3. Data structure and algorithm(OE-EE-501A)		~~	
Unit Content		Hrs	Marks
Introduction: Overview of Artificial intellige	nce- Problems of AI, AI		
technique, Tic - Tac - Toe problem.			
	Intelligent Agents: Agents & environment, nature of environment,		
1 structure of agents, goal based agents, utility agents.	structure of agents, goal based agents, utility based agents, learning		
Problem Solving: Problems, Problem Space	& search. Defining the	06	
problem as state space search, production syst			
characteristics, issues in the design of search			
Search techniques: Solving problems by Sea			
agents, searching for solutions; uniform search			
search, depth first search, depth limited search	ch, bidirectional search,		
comparing uniform search strategies.			
Heuristic search strategies: Greedy best-f			
2 memory bounded heuristic search: local			
optimization problems: Hill climbing searc		12	
search, local beam search, genetic algorithms			
problems, local search for constraint satisfact			
Adversarial search : Games, optimal dec			
games, the minimax search procedure, alpha- additional refinements, iterative deepening	beta pruning,		
Knowledge & reasoning: Knowledge	representation issues		
representation & mapping, approaches to know	•	05	
3 issues in knowledge representation	streage representation,		

4.	 Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction. Probabilistic reasoning [4] Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logic 		
5.	Natural Language processing: Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing.		

- 1. Artificial Intelligence, K, Knight, E. Rich, S.B. Nair, 3rd Edition TMH
- 2. A classical approach to Artificial Intelligence, M.C. Trivedi, 2nd Edition, Khanna Publishing House, New Delhi
- 3. Introduction to Artificial Intelligence & Expert Systems, D.W. Patterson, PHI
- 4. Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, Pearson

Reference books

- 1. Computational Intelligence, D. Poole, Alan Mackworth, and Randy Goebe, IOUP
- 2. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 3. Expert Systems principle and programming, J.C. Giarranto, Cengage Learing.

Course Outcome:

- 1. explain the concept of knowledge representation and predicate logic and transform the real life information in different representation
- 2. describe state space and its searching strategies
- 3. demonstrate profesency in applying scientifc method to models of machine learning
- 4. apply the machine learning concepts in real life problems
- 5. demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications

Name	e of the course D	DIGITAL IMAGE PR	OCESSING	
Course Code: OE-EE 702B		emester: 7th		
Dura	tion: 6 months N	/Iaximum Marks: 100		
T 1				
	8	Examination Scheme		
	5	Aid Semester Exam: 15		
		Assignment & Quiz: 10		
Credi			5 Marks	
	E	End Semester Exam: 70	Marks	
Obje				
1.	To understand fundamentals and mathematical	transforms necessary	for image proc	essing.
2.	To understand the image enhancement techniq			
3.	To understand the image restoration procedure			
4.	To understand the image compression procedure			
	equisite			
1.	Digital Signal Processing (OE-EE 601A)			
Unit	Content		Hrs	Marks
	Introduction: Fundamental Steps in Digital	Image Processing,		
	Components of an Image Processing Syst		impling and	
	Quantization, Representing Digital Images (Da	1 U		
1	Basic Relationships Between Pixels- Neighbors	and Connectivity of		
	pixels in image, Applications of Image Processin	•		
	Robot vision, Character recognition, Remote Sensing.			
	Image Enhancement In The Spatial Domain			
2	Level Transformations, Histogram Processing,			
	Arithmetic/Logic Operations, Basics of Spatial		08	
	Spatial Filters, Sharpening Spatial Filters, Comb	bining Spatial		
	Enhancement Methods.			
2	Image Enhancement In Frequency Domain:		00	
3	Transform, Discrete Fourier Transform (DFT), Discrete Cosing Transform (DCT), Image filteri		08	
	Discrete Cosine Transform (DCT), Image filterin domain.	ing in frequency		
4	Image Segmentation: Introduction, Detection o	f isolated points line	08	
-	detection, Edge detection, Edge linking, Region	1 /	00	
	Region growing, split and merge technique, local			
	processing, Hough transform, Segmentation	i processing, regionar		
	using Threshold.			
	Image Compression: Introduction, coding Redu	undancy, Inter-pixel		
	redundancy, image compression model, L		08	
5	compression, Huffman Coding, Arithmetic Co			
	Transform Coding, Sub-image size selection, blo			
	implementation using FFT, Run length coding.			

- 1. Digital Image Processing, R.C Gonzalez and R. Woods, Pearson publication, 2017
- 2. Digital Image Processing, Anil K. Jain, Prentice-Hall, India, 1988.

Reference books:

- 1. Digital Image Processing, W.K. Pratt, John Wiley & Sons, 1991.
- 2. Digital Image Processing and Analysis, B. Chanda & D. Dutta Majumder Prentice-Hall India, 2011
- 3. Image Processing- Theory, Algorithms & Architecture, M. A. Sid-Ahmed, McGraw-Hill, 1994.

Course Outcome:

- 1. explain the fundamental concepts of a digital image processing system.
- 2. enhance images in the spatial and frequency domain using various transforms.
- 3. apply different image segmentation techniques.
- 4. categorize various compression techniques. implement image process and analysis algorithms.
- 5. apply image processing algorithms in practical applications.

Name of the course PRIN		PRINCIPLE OF MANAGE	EMEENT	
Course Code: HM-EE 701 Duration: 6 months		Semester: 7 th		
		Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	t Points: 3	End Semester Exam: 70	Marks	
Objec	tive:			
1.	To understand basic concept and approaches t	o management.		
2.	To understand planning and decision making	*		
3.	To understand organizational design and struc	cture.		
4.	To understand various aspects of leadership.			
Pre-R	equisite			
1.	English (HM- HU 201)			
Unit	Content		Hrs	Marks
2	the term Management, Management as a Management as a Profession, Management as between Management & Administration; L Roles of a Manager, Quality of a good Ma Management, Limitations of Management, Bus its interaction with Management. Approaches to Management – Classical, New Contributors to Management Thought – Taylo Fayol's and Administrative Theory, Peter Dru Management Thought. Various Approaches Schools of Management Thought) Indian Mar Planning & decision making: Planning:	s a Process, Difference evels of Management, anager, Significance of siness Environment and o-classical and Modern r and Scientific Theory, acker and s to Management (i.e. nagement Thought	0	
2	Process, Types, Principles, Significance & L Strategic Planning – Meaning & Process, ME and Requirements for Implementation, Plannin & Types, Forecasting – Meaning & Technique Decision Making – Meaning, Types, Pro Limitations	imitations of Planning; 30 – Meaning, Process ng Premises – Meaning es.	8	
3	Organization design & Structure: Orga Process, Principles, Organization Structure Forms: Line, Functional, Line & Staff, Committees; Formal and Informal Organizati Meaning and Bases; Span of Control – Influencing; Authority, Responsibility and Accountability; Delegatio Principles; Centralization and Decentralization	e – Determinants and Project, Matrix and ion; Departmentation – Meaning and Factors on – Meaning, Process;	8	

	of Decentralization; Difference between Delegation and Decentralization.	
4	Directing: Motivation – Meaning , Definition, Significance & Limitations; Financial and non-financial incentives of Motivation Leadership - Meaning, Definition, Significance of Leadership, Leadership styles Type, Process and Barriers of Communication, Strategies to overcome the Barriers.	8
5	 Customer Management – Market Planning & Research, Marketing Mix, Advertising & Brand Management. Operations & Technology Management – Production & Operations Management, Logistics & Supply Chain Management, TQM, Kaizen & Six Sigma, MIS. 	8

- 1. Essentials of Management. H. Koontz and H. Weihrich , 7th Edition, Tata McGraw Hill
- 2. Principles of Management, Premvir Kapoor, Khanna Publishing House, 2019
- 3. Principles of Management Text and Cases, Dipak Kumar Bhattacharyya. Pearson Education India, 2011.

Reference books:

- 1. Management-Text & Cases, V.S.P Rao & Hari V. Krishna, Excel Books, 2005
- 2. Principles of Management, T. Ramaswami, Himalaya Publishing House, 2014
- 3. Management of Technology and Operations, R. Ray Gehani, Wiley, 1998

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the concepts and approaches of management.
- 2. demonstrate the roles, skills and functions of management.
- 3. diagnose and solve organizational problems.
- 4. identify the complexities associated with management of human resources in the organizations and integrate the learning in handling these complexities.
- 5. apply different methods of Customer, Operation and Technology management. acquire skills of good leader in an organization.

Semester-VIII

Name	of the course	UTILIZATION OF ELECT	RIC POWER	
Course Code: PC-EE 801		Semester: 8 th		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theor	y: 3 hrs/week I	Mid Semester Exam: 15	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 10	Marks	
Practi	cal: 0 hrs/week	Attendance: 0	5 Marks	
Credit	Points: 3	End Semester Exam: 70) Marks	
Objec	tive:			
1.	To understand basic principle of illumination a	and good lighting pra	ctices	
2.	To understand the method of Electric heating,	, Welding and Electro	olytic processe	es.
3.	To understand the concepts of Electrical tra	ction systems .		
4.	To solve numerical problems on the topics stud	lied.		
Pre-R	equisite			
1.	Electric Machine (PC-EE-401, PC-EE-501)			
2.	Control System (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
1	Electric Traction : Requirement of an ideal tra	action system, Supply		
	system for electric traction, Train movement (s			
	simplified speed time curve, average speed and schedule speed),			
	Mechanism of train movement (energy consum	A		
	during acceleration, tractive effort on a gradient	t, tractive effort for		
	resistance, power & energy output for the drivin	ng axles, factors		
	affecting specific energy consumption, coefficient	ent of adhesion).	10	
	Electric traction motor & their control: Paralle		10	
	of Series and Shunt motor with equal and une			
	effect of sudden change of in supply voltage, T	emporary interruption		
	of supply, Tractive effort and horse power.			
	Use of AC series motor and Induction motor fo			
	Traction motor control: DC series motor co			
	control, Braking of electric motors, Electrolys			
	earth, current collection in traction system, Pow	ver electronic		
2	controllers in traction system. Electric Lighting: Definition of terms; la	owe of illumination		
Z	Luminaries; Lighting requirements; Illumin	-		
	selection and maintenance; Lighting schemes, c			
	– Interior lighting – industrial, Factory, resider	0	8	
	lighting - Flood, street lighting, lighting for dis		0	
	neon signs, LED-LCD displays beacons and light			
	Energy Conservation codes for lighting; lighting			
	controls – daylight sensors and occupancy sensor			
3	Electric Heating : Advantages of electric		08	
	methods, Resistance heating – direct and indire			
	electric ovens, their temperature range, pro			
	heating elements, domestic water heaters			

	appliances and thermostat control circuit ,Induction heating; principle of core type and coreless induction furnace , Electric arc heating, direct and indirect arc heating, construction, working and applications of arc furnace, Dielectric heating, applications in various industrial fields, Infra-red heating and its applications, Microwave heating, Simple design problems of resistance heating element.		
4	Electric Welding: Advantages of electric welding, Welding methods, Principles of resistance welding, types –spot, projection seam and butt, welding and welding equipment used , Principle of arc production, electric arc welding, characteristics of arc, carbon arc, metal arc, hydrogen arc welding and their applications, Power supply required ,Advantages of using coated electrodes, comparison between AC and DC arc welding, welding control circuits, welding of aluminum and copper, Introduction to TIG, MIG welding	08	
5	Electrolytic processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating, Factors affecting electro-deposition, Principle of galvanizing and its applications, Principle of anodising and its applications, Electroplating on non-conducting materials , Manufacture of chemicals by electrolytic process and electrolysis process.	06	

- 1. Generation Distribution and Utilization of Electrical Energy, C.L. Wadhawa, New Age International Publishers, 2015
- 2. Art and Science of Utilization of Electrical Energy, H. Partab, Dhanpat Rai & co, 2017
- 3. Utilisation of Electric Energy, E.Openahaw Taylor, Universities press, 1981

Reference books:

- 1. Generation and Utilization of Electrical Energy by S. Sivanagaruju, Pearson, 2010.
- 2. Utilization of Electrical Energy by J. B. Gupta, Rajeev Manglik, Rohit Manglik, Kataria Publications, 2012.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the fundamentals of illumination and different lighting schemes.
- 2. explain the fundamental of Electrolytic processes, Electric heating and Welding.
- 3. able to select appropriate lighting, heating and welding techniques for specific applications.
- 4. apply different electrolysis process for different applications.
- 5. explain the principle of different aspect of Electric traction and control of traction motor.

Name	of the course	ADVANCED ELECTRIC	DRIVE	
Course Code: PE-EE 801C		Semester: 8 th		
Duration: 6 months		Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	ial: 0 hr/week	Assignment & Quiz: 10	Marks	
	cal: 0 hrs/week	-	5 Marks	
	Points: 3	End Semester Exam: 70		
Objec	tive:			
1.	To understand basic principle of operation of I	Power Converters used f	for AC drives	
2.	To understand the method for modeling and co			nous motor.
3.	To understand the method of control of Perma			
	drive.	0	,	
4.	To understand the principle of DSP based mot	ion control.		
Pre-R	equisite			
1.	Electric Machine (PC-EE-401, PC-EE-501)			
2.	Control System (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
1	Power Converters for AC drives: PWM cont	rol of inverter, selected	8	
	harmonic elimination, space vector modulati		-	
	VSI, three level inverter, Different topolog			
	inverter, Diode rectifier with boost chopper, H	PWM converter as line		
	side rectifier, current fed inverters with self-co	ommutated		
	devices. Control of CSI, H bridge as a 4-Q driv	ve.		
2	Induction motor drives: Different transform		8	
	frame theory, modeling of induction machine	÷		
	control-v/f control, vector control, direct torqu	e and flux		
	control(DTC).	1 1'	_	
3	Synchronous motor drives: Modeling of sync		5	
	open loop v/f control, vector control, direct tor	que control, CSI fed		
4	synchronous motor drives.		5	
4	Permanent magnet motor drives: Introduction to various PM5motors, BLDC and PMSM drive configuration, comparison, block5			
	diagrams, Speed and torque control in BLDC a	· · · ·		
5	Switched reluctance motor drives: Ev		5	
5	reluctance motors, various topologies for SRM		-	
	Closed loop speed and torque control of SRM.			
6	DSP based motion control: Use of DSPs in n		5	T
	various DSPs available, realization of some basic blocks in DSP for			
	implementation of DSP based motion control.			

- 1. Modern Power Electronics and AC Drives, B. K. Bose, PHI, 2005
- 2. Permanent Magnet Synchronous and Brushless DC motor Drives, R. Krishnan, CRC Press, 2009
- 3. DSP based Electromechanical Motion Control, H. A. Taliyat and S. G. Campbell, CRC Press, 2003.

Reference books:

1. Analysis of Electric Machinery and Drive Systems, P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Wiley, 2013.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the principle of operation of converters for AC drives.
- 2. model Induction and Synchronous motor by reference frame theory.
- 3. apply different control methods to control speed and torque of Induction and Synchronous motor.
- 4. explain the configurations and method of speed control of BLDC, PMSM and SRM.
- 5. realize basic blocks for DSP based motion control. develop appropriate scheme for speed control of Induction and Synchronous motor.

Name of the course		SENSORS AND TRA	NSDUCERS	
Course Code: OE-EE 801D		Semester: 8th		
Duration: 6 months		Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	al: Ohr/week	Assignment & Quiz: 10		
Credit	Points: 3		05 Marks	
		End Semester Exam: 7	0 Marks	
Objec				
1.	To understand the principle of operation of Tr			
2.	To understand the application of Transducers	and Sensors		
Pre-R	Pre-Requisite			
1.	Electric Circuit Theory (PC-EEE-301)			
2.	Electromagnetic Field Theory (PC-EEE-303)			
Unit	Content		Hrs	Marks
	Introduction:			
1	Definition, significance of measurement and i		05	
	of sensing & transduction, transducer classific			
	characteristics, emerging fields of sensor techn			
2	Resistive transducers: Potentiometers: types,			
	and semiconductor strain gauges, types, resistance measuring 05			
	methods, strain gauge applications: Load and torque measurement.			
3	Inductive transducers: Transformer type, synchros, eddy current			
	transducers, LVDT: Construction, material, input-output		08	
	characteristics.			
	Optical Sensors: LDR, Photo Diode, Strobos	cope, IR Sensor.		

4	Capacitive transducers: Variable distance-parallel plate type,	
	variable area- parallel plate type, cylindrical type, differential type,	
	variable dielectric constant type, calculation of sensitivity. Capacitive	
	microphone, fluid level measurement.	
	Piezoelectric transducers: piezoelectric effects, Materials, natural	10
	and synthetic types – their comparison, Charge and voltage co-	
	efficient, Force and stress sensing, displacement measurement.	
	Magnetic Transducer: Hall effect sensors, Magnetostrictive	
	transducers: principle, positive and negative magnetostriction.	
5	Thermal sensors: Resistance temperature detector (RTD): principle,	
	materials and types; Thermistor: principle, materials and types;	06
	Thermocouple, Thermoelectric effects, laws of thermocouple,	
	thermocouple types, construction. IC temperature sensor, PTAT type	
	sensor.	
	Radiation sensors: types, characteristics and comparison.	
	Pyroelectric type.	
6	Micro-sensors and smart sensors: Construction, characteristics	
	and applications. Standards for smart sensor interface.	04
	Recent Trends in Sensor Technologies: Introduction; Film sensors	
	(Thick film sensors, thin film sensor)	

- 1. Transducers and Instrumentation, D.V.S. Murthy, Prentice Hall, 2008
- 2. Sensors and Transducers, D. Patranabis, Prentice Hall India, 2003
- 3. Measurement Systems Application and Design, E.O. Doebelin, McGraw-Hill, 2008

Reference books:

- 1. Instrument Transducers An Introduction to their Performance and Design", H.K.P. Neubert, Oxford University Press, 1999.
- 2. Measurement Systems and Sensors, WaldemarNawrocki Artech House, 2016.
- 3. Semiconductor sensors", S.M. Sze, Wiley Interscience, 1994
- 4. Instrumentation Measurement and Analysis", B. C. Nakara&Chaudhry TATA McGraw-Hill, 2009
- 5. Smart Sensors and Sensing Technology, Daniel E. Suarez, Nova Science Publishers, 2011

Course Outcome:

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards and procedures for measurement of physical parameters
- 4. estimate the performance of different transducers. design real life electronics and instrumentation measurement systems.
- 5. apply smart sensors, bio-sensors, PLC and Internet of Things to different applications.

BACHELOR IN ARCHITECTURE (B. Arch.) - 1st SEMESTER

(Applicable from the academic session 2019-2020)

1. LANGUAGE LAB. /TECHNICAL ENGLISH (ARCH 101)

OUTCOME:

Improvement of communicative and presentation skills and prepare the students.

2. MATHEMATICS - I (ARCH 102)

OUTCOME:

Development of basic skill needed for studying related to analytical advanced subjects.

3. ENGINEERING MECHANICS (ARCH 103)

OUTCOME:

The students will be able to apply the basic principles of mechanics and structural behavior to design and analyze structural elements in future projects.

4. HISTORY OF ART & ARCHITECTURE (ARCH 104)

OUTCOME:

The students shall gain knowledge about the chronological development of Art & Architecture, the basic design elements, forms, materials, construction techniques and design principles developed under the socio-economic cultural and political influence during various time periods. The students can analyze the contributing factors for the design development of different styles during these time periods.

5. ARCHITECTURAL DESIGN I (ARCH 181)

OUTCOME:

The students will have a basic idea of generating design concepts and represent the same in Architectural drawings using composition of different design elements, forms and basic design principles. Application of anthropometric data and standards in designing of space.

6. ARCHITECTURAL GRAPHICS - I (ARCH 182)

OUTCOME:

Develop knowledge of drawing as a medium to visualize and communicate ideas. Application of various drawing tools and accessories used in drafting and lettering techniques. Imparting knowledge of representation of three-dimensional forms in design projects using graphical presentation skills.

7. MODEL MAKING (ARCH 183)

OUTCOME:

Students will develop ability to understand and represent space by three-dimensional geometric/ abstract forms in scale. Develop skills of cutting and joining simple materials for model making.

8. NSS/ ECA / NCC/ SPORTS (ARCH 184)

OUTCOME:

The students should emerge as healthy and socially conscious citizens capable of doing hard work under pressure and respond to the requirements of the society. This would also help in imparting a sense of responsibility and team work.

BACHELOR IN ARCHITECTURE (B. Arch.) - 2nd SEMESTER

1. MATHEMATICS - II (ARCH 201)

OUTCOME:

Students will be capable to understand advanced analytic subjects in the curriculum.

2. STRENGTH OF MATERIALS (ARCH 202)

OUTCOME:

Students will understand the structural behavior of beams under different conditions.

3. HISTORY OF ARCHITECTURE-I (ARCH 203)

OUTCOME:

Students will understand the diversity of architecture in India and will gain knowledge about the design variables, construction techniques, materials and craftsmanship used in the historical buildings of Indian Subcontinent.

4. MATERIALS AND CONSTRUCTION-I (ARCH 204)

OUTCOME:

Students will learn the uses, properties and applications of various constructional materials.

5. ARCHITECTURAL DESIGN II (ARCH 281)

OUTCOME:

Students will gain basic skills for designing basic spaces and forms.

6. ARCHITECTURAL GRAPHICS -II (ARCH 282)

OUTCOME:

Students will be able to develop Architectural Design through spatial ordering mechanisms and programmatic interpretation.

7. WORKSHOP PRACTICE - (ARCH 283)

OUTCOME:

Students will acquire skills to generate different architectural elements through prototype building.

8. EDUCATIONAL TOUR (ARCH 284)

OUTCOME:

Students will get exposure to various types of historical as well as modern structures.

BACHELOR IN ARCHITECTURE (B. Arch.) - 3rd SEMESTER

1. STRUCTURE - I (ARCH 301)

OUTCOME:

Shall equip the students with knowledge of basic structure, helping them to design simple building components.

2. CLIMATOLOGY (ARCH 302)

OUTCOME:

Will be able to design climate responsive buildings considering the impact of climatic factors, comfort conditions, natural ventilation and day lighting.

3. HISTORY OF ARCHITECTURE --- II (ARCH 303)

OUTCOME:

Students will be aware of the impact of Islamic influence on the development of architectural style for future application in appropriate context.

4. MATERIALS AND CONSTRUCTION-II (ARCH 304)

OUTCOME:

The students will understand the basic components of a building with its construction details and develop the ability to integrate knowledge of properties and construction methods of these components in the design of simple projects.

5. ARCHITECTURAL DESIGN III (ARCH 381)

OUTCOME:

Students will understand the relation of space, form and site considerations to develop designs for medium sized public buildings.

6. METHODS OF CONSTRUCTION I (ARCH 382)

OUTCOME:

Students will gain knowledge of constructional details of different building components which can be applied in future projects.

7. COMPUTER EDUCATION (ARCH 383)

OUTCOME:

Getting idea about the history and basics of computer, its programming and architecture.

8. MATERIAL TESTING WORK SHOP (ARCH 384)

OUTCOME:

Gain hands on experience about properties of basic building materials.

BACHELOR IN ARCHITECTURE (B. Arch.) - 4th SEMESTER

1. STRUCTURE – II (ARCH 401)

OUTCOME:

Will equip students with knowledge of different theories for analysis of structural behaviour of structures.

2. ACOUSTICS (ARCH 402)

OUTCOME:

Students will gain knowledge of basics architectural acoustic systems in buildings and acoustic principles and treatments and be equipped to design acoustic interiors and buildings.

3. HISTORY OF ARCHITECTURE-III (ARCH 403)

OUTCOME:

Students will gain knowledge about the spatial and stylistic qualities, use of materials & technology and principles of composition associated with architecture during Classical to Renaissance period. An understanding of architecture as an outcome of various social, political and economic upheavals, and as a response to the culture and context.

4. MATERIALS AND CONSTRUCTION --- III (ARCH 404)

OUTCOME:

The students will gain knowledge of cost effective and environmentally friendly materials, types and constructional details of building components like doors, windows and stairs and finishes for application in practical field.

5. ARCHITECTURAL DESIGN IV (ARCH 481)

OUTCOME:

Students will learn to analyze different parameters and design Institutional buildings.

6. METHODS OF CONSTRUCTION II (ARCH 482)

OUTCOME:

The students will learn to do detail drawings of the above mentioned basic components of a building.

7. COMPUTER GRAPHICS - I (ARCH 483)

OUTCOME:

The students will learn to express the representation of visual composition in 2D using digital tools, drafting, 3D visualization and rendering.

8. EDUCATIONAL TOUR (ARCH 484)

OUTCOME:

Students will learn and experience the architectural characteristics of various historical as well as contemporary buildings.

BACHELOR IN ARCHITECTURE (B. Arch.) - 5th SEMESTER

1. STRUCTURES III (ARCH 501)

OUTCOME:

Students will gain knowledge about design and detailing of concrete structural components.

2. BUILDING SERVICES I (ARCH 502)

OUTCOME:

Students will gain knowledge about water supply, sewerage, and waste disposal systems in buildings and develop the ability to conceptually plan/ design.

3. HISTORY OF ARCHITECTURE - IV (ARCH 503)

OUTCOME:

The students will have an insight into the development of Modern architecture and Arts & Crafts movement in Europe and America.

4. MATERIALS AND CONSTRUCTION -- V (ARCH 504)

OUTCOME:

The students will acquire knowledge of roofing, partitions and paneling in building construction and become familiar with advanced materials and construction techniques.

5. ARCHITECTURAL DESIGN V (ARCH 581)

OUTCOME:

The students will develop sensitivity in design approach in community oriented projects analyzing context, collective values and needs.

6. METHODS OF CONSTRUCTION III (ARCH 582)

OUTCOME:

The students will learn detail drawings of the above mentioned building components for future practical applications.

7. COMPUTER GRAPHICS II (ARCH 583)

OUTCOME:

Exposure to software like 3D Max, Sketch-up and Photoshop will help students to prepare presentation drawings in 2D and 3D.

8. SURVEY FIELD WORK (ARCH 584)

OUTCOME:

Students will develop the ability to measure, draw, and represent all the physical parameters of a site.

BACHELOR IN ARCHITECTURE (B. Arch.) - 6th SEMESTER

1. STRUCTURES IV (ARCH 601)

OUTCOME:

Students will gain knowledge of analyzing and designing steel structures.

2. BUILDING SERVICES II (ARCH 602)

OUTCOME:

The student will understand the importance and working of lighting installation in buildings, and gain the ability to design basic electrical lighting and firefighting systems.

3. HISTORY OF ARCHITECTURE - V (ARCH 603)

OUTCOME:

The students will gain knowledge of neo-vernacular and contemporary architecture.

4. LANDSCAPE DESIGN (ARCH 604)

OUTCOME:

The student will understand the scope of landscape architecture, the elements used in landscape design and the impact of human activities on the environment and also the role of architect in mitigating it.

5. ARCHITECTURAL DESIGN VI (ARCH 681)

OUTCOME:

The students will learn design methods for site planning and give appropriate/ innovative design solutions for community buildings in urban environment.

6. WORKING DRAWING (ARCH 682)

OUTCOME:

The students will learn to use architectural terms and symbols; apply construction materials and methods; identify the relationship between specifications and drawings; identify governing codes; and produce a set of sanction drawings and commercial construction drawings.

7. ESTIMATION & VALUATION (ARCH 683)

OUTCOME:

The students will be able to forecast the estimated value of a project and determine basic specifications of material and workmanship.

8. EDUCATIONAL TOUR (ARCH 684)

OUTCOME:

Students will learn and experience the architectural characteristics of various historical as well as contemporary buildings.

BACHELOR IN ARCHITECTURE (B. Arch.) - 7th SEMESTER

1. STRUCTURE IN ARCHITECTURE (ARCH 701)

OUTCOME:

Students will learn the behavioral pattern of different structural systems so as to incorporate those in their design.

2. BUILDING SERVICES III (ARCH 702)

OUTCOME:

Students will learn different air conditioning systems and types of lifts.

3. BLDG. ECONOMICS & CONST. MANAGEMENT (ARCH 703)

OUTCOME:

Students will learn to manage the economic aspect of construction.

4. URBAN PLANNING & HUMAN SETTLEMENTS (ARCH 704)

OUTCOME:

The student will gain knowledge about the nature, characteristics and evolution of human settlements and also the planning concepts of historical and contemporary towns. They will be aware of the current issues in urban planning and will be acquainted with land-use, zoning, types of development plan, etc.

5. ARCHITECTURAL DESIGN VII (ARCH 781)

OUTCOME:

The students will learn innovative design solutions for Institutional buildings/Housing in urban environment.

6. INTERIOR DESIGN (ARCH 782)

OUTCOME:

The students will gain knowledge about Ergonomics and furniture design and get an overall exposure to the ways in which interior spaces can be enriched through the design of specific components.

7. ARCHITECTURAL ILLUMINATION (ARCH 783)

OUTCOME:

The students understand the principles, laws, and recommended values of illumination in buildings with experiments for application in design projects.

BACHELOR IN ARCHITECTURE (B. Arch.) - 8th SEMESTER

1. ENERGY EFFICIENT ARCHITECTURE (ARCH 801)

OUTCOME:

Students will gain knowledge of alternative sources of energy and passive design considerations, day lighting and natural ventilation in design. They will also understand future trends in creating sustainable built environment.

2. HOUSING & COMMUNITY PLANNING (ARCH 802)

OUTCOME:

Students will have an overall view of the housing policies within India and third world countries.

3. URBAN DESIGN (ARCH 803)

OUTCOME:

Students will be aware of the evolution and characteristics of urban forms, their components and interdependencies and understand elements, principles, concepts & components of urban design.

4. DISASTER MITIGATION (ARCH 804)

OUTCOME:

The students will be aware about disasters and the strategies for disaster management and mitigation. They will also understand the design guidelines in disaster resistant construction.

5. ARCH. DESIGN VIII (ARCH 881)

OUTCOME:

The students will develop design approach in Institutional projects and also learn the details.

6. THESIS PROGRAMMING (ARCH 882)

OUTCOME:

Students will equip themselves with the all-round knowledge to take up their thesis project in their final semester.

7. OFFICE MANAGEMENT (ARCH 883)

OUTCOME

Student will gain knowledge of the role of professional and statutory bodies and understand the role of an architect and professional ethics.

BACHELOR IN ARCHITECTURE (B. Arch.) - 9th SEMESTER

1. PROFESSIONAL TRAINING (ARCH 981)

OUTCOME

Students will gain hands on knowledge of all aspects of Architectural Practice, specifically knowledge of design and details of varied types of buildings.

BACHELOR IN ARCHITECTURE (B. Arch.) - 10th SEMESTER ELECTIVES I, II

ADVANCED STRUCTURES (ARCH 1001a)

OUTCOME

Students will understand concepts and applications of critical and advance structures for future applications.

COST EFFECTIVE BUILDING TECHNOLOGY (ARCH 1001b)

OUTCOME:

Students will learn cost effective materials and construction methods of sustainable and green building design.

BUILDING MAINTENANCE (ARCH 1001c)

OUTCOME:

Students will learn important aspects of building maintenance.

INDUSTRIAL ARCHITECTURE (ARCH 1001d)

OUTCOME:

Students will understand design aspects of industrial buildings and the codes affecting it.

BARRIER FREE ARCHITECTURE (ARCH 1001e)

OUTCOME:

Students will understand the special design considerations for barrier free architecture and the guiding norms.

ADVANCED LANDSCAPE (ARCH 1002a)

OUTCOME:

The students will understand the contemporary Landscape planning in urban scenario and assess the current trends for application in their design.

VERNACULAR ARCHITECTURE (ARCH 1002b)

OUTCOME:

The students will gain knowledge about materials and methods of construction, planning and forms of vernacular architecture in different regions of the country.

ENVIRONMENTAL PLANNING (ARCH 1002c)

OUTCOME:

The students will gain knowledge of the existing natural resources, various ecosystems the need for preserving the resources and the environmental legislations.

CONSERVATION (ARCH 1002d)

OUTCOME:

The students will understand current trends in conservation, its need and the governing laws.

RETROFITTING (ARCH 1002e)

OUTCOME:

The students will learn different methods of retrofitting for future application.

ARCHITECTURAL THESIS (ARCH 1081)

OUTCOME:

The students will learn to handle a complete architectural design project at an advanced level and give a complete solution to the problem through design and details.